重邮大学物理英文版PPT (5)_第1页
重邮大学物理英文版PPT (5)_第2页
重邮大学物理英文版PPT (5)_第3页
重邮大学物理英文版PPT (5)_第4页
重邮大学物理英文版PPT (5)_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3ELECTRICFLUX,GAUSSSLAW,2020/5/14,1,1.ElectricFieldLines,Aconvenientspecializedpictorialrepresentationforvisualizingelectricfieldpatternsiscreatedbydrawinglineswhicharecalledelectricfieldlines.,Theelectricfieldlinesarerelatedtotheelectricfieldinanyregionofspaceinthefollowingmanner:,2020/5/14,2,(1)Thetangentdirectionateverypointonanelectricfieldlineisjustthedirectionofthefieldintensityatthatpointorthedirectionoftheforceonthepositivepointchargeatthatpoint.(2)Theelectricfieldlinesaredenserintheplacewherethefieldintensityisstronger,andtheelectricfieldlinesaresparserintheplacewherethefieldintensityisweaker.(3)Theelectricfieldlinesstartonpositivechargesandterminateonnegativecharges,andneverintersectedeachother.Itisneverinterruptedinregionwithoutcharge;thisiscalledthecontinuityofelectricfieldline.,(4)Keepinmind:electricfieldlinesdonotactuallyexist.,2020/5/14,3,+,+,Forapositivepointcharge,thelinesaredirectedradiallyoutward.,Foranegativepointcharge,thelinesaredirectedradiallyinward.,Theelectricfieldlinesfortwochargesofequalmagnitudeandoppositesign(anelectricdipole),NOTE:thenumberoflinesleavingthepositivechargeequalsthenumberterminatingatthenegativecharge.,Theelectricfieldlinesfortwopositivepointcharges.,Theelectricfieldlinesforapointcharge+2qandasecondpointchargeq.,+,+,+,+,+,+,+,+,+,RingAmount,2020/5/14,8,FluxAmount,2.ElectricFluxe,1.Uniformelectricfield,2.Uniformelectricfield,=,S,3.Nonuniformelectricfield,arbitrarysurface,UNIT:Vm,2020/5/14,10,Where,2020/5/14,11,Aclosedsurfaceisdefinedasonethatcompletelydividesspaceintoaninsideregionandoutsideregion,sothatmovementcannottakeplacefromoneregiontotheotherwithoutpenetratingthesurface.,Foraclosedsurface,usuallydefinethenormallineateverypointonthesurfacepointsoutoftheclosedsurface,Aclosedsurface,Aopensurface,2020/5/14,12,=0,0,0,n,n,Accordingtotheconvention,outwardtheclosedsurface;,inwardtheclosedsurface.,2020/5/14,14,Thereisacubesurfaceofedgelengthaintheuniformelectricfield(isaconstant)asshowninfigure.Findtheelectricfluxofeveryplaneandthecubesurface.,Example,2020/5/14,15,Gaussworkedinawidevarietyoffieldsinbothmathematicsandphysicsincludingnumbertheory,analysis,differentialgeometry,geodesy,magnetism,astronomyandoptics.Hisworkhashadanimmenseinfluenceinmanyareas.Sometimesknownastheprinceofmathematiciansandgreatestmathematiciansinceantiquity,JohannCarlFriedrichGauss1777-1855,3.GAUSSSLAW,2020/5/14,16,Thenetelectricfluxofanarbitraryclosedsurfaceinthevacuumisequaltothenetchargeinsidethesurfacedividedby.,(1)GAUSSSLAW,2020/5/14,17,S:Theclosedsurface,i.e.gaussiansurface.Itisanimaginarysurfaceandneednotcoincidewithanyrealphysicalsurface.,isthetotalelectricfieldatanypointonthesurfaceduetoallcharges.,Surfaceelement.Itsorientationisperpendiculartothesurfaceandpointsoutwardfromtheinsideregion.,Thealgebrasumofchargesintheclosedsurface.,Theclosesurfaceintegralisoverallgaussiansurface.,2020/5/14,18,Itgiveasimplewaytocalculatethedistributionofelectricfieldforagivenchargedistributionwithsufficientsymmetry.,2020/5/14,19,r,(2)Proving,Asphericalgaussiansurfaceofradiusrsurroundingapointchargeqwhichisatthecentreofthesphere.,Theelectricfieldisnormaltothesurfaceandconstantinmagnitudeeverywhereonthesurface.,2020/5/14,20,Asphericalgaussiansurfaceofradiusrsurroundingapointchargeqwhichisnotatthecentreofthesphere.,r,q,O,2020/5/14,21,Anarbitrarygaussiansurfacesurroundingapointchargeq.,Thenetelectricfluxthrougheachsurfaceisthesame.,2020/5/14,22,S,q1,q2,q3,Therearemanychargesinsidetheguassiansurface.,2020/5/14,23,Apointchargelocatedoutsideaclosedsurface.Thenumberoflinesenteringthesurfaceequalsthenumberleavingthesurface.,Thenetelectricfluxthroughaclosedsurfacethatsurroundsnonetchargeiszero.,Zerofluxisnotzerofield.,2020/5/14,24,Conclusion,Thenetfluxthroughanyclosedsurfacesurroundingthepointchargeqisgivenby,Asystemofcharges,Continuousdistributionofcharges,2020/5/14,25,(3)PhysicalMeaning,Thepositivechargeisthesourceoftheelectrostaticfield.,Gaussslawisvalidfortheelectricfieldofanysystemofchargesorcontinuousdistributionofcharge.,Guassslawcanbeusedtoevaluatetheelectricfieldforchargedistributionsthathavespherical,cylindrical,orplanesymmetry.Thetechniqueisusefulonlyinsituationswherethedegreeofsymmetryishigh.,2020/5/14,26,QuickQuiz,Whyaretheelectrostaticfieldlinesneverinterruptedinregionwithoutcharge?,2020/5/14,27,Findthefluxthroughthesquare.,QuickQuiz,2020/5/14,28,Considerwhetherthefollowingstatementsaretruth.,ElectricfluxoftheGausssurfaceisrelatedwithchargesinGausssurfaceandisnotrelatedwithchargesoutofGausssurface.,ThefieldintensityatapointontheGausssurfaceisrelatedwithchargesintheGausssurfaceandisnotrelatedwithchargesoutoftheGausssurface.,IftheelectricfluxofaGausssurfaceequalszero,theremustbenotchargeintheGausssurface.,2020/5/14,29,IftheelectricfluxofaGausssurfaceequalszero,thenfieldintensityateverypointontheGausssurfaceiszero.,Gausstheoremistenableonlytotheelectrostaticfieldwhosedistributionissymmetricalinspace.,2020/5/14,30,(4)ApplicationofGausssLawtoSymmetricChargeDistribution,Thegaussiansurfaceshouldalwaysbechosentotakeadvantageofthesymmetryofthechargedistribution,sothatwecanremoveEfromtheintegralandsolveit.,2020/5/14,31,Thegaussiansurfacehadbettersatisfiesoneormoreofthefollowingconditions:,Thevalueoftheelectricfieldisconstant.,andareparallel.,andareperpendicular.,isequaltozeroeverywhereonthesurface.,Note:ThesurfaceintegralinGuassslawistakenovertheentiregaussiansurface.,2020/5/14,32,Planesymmetry,Sphericalsymmetry,Thethreesymmetries:,Cylindricalsymmetry,2020/5/14,33,Problem-solvingstrategy,Analysisthesymmetryofthefieldintensitydistribution.,Selectappropriategaussiansurface.,Selectappropriatecoordinates,applyGaussslaw.,2020/5/14,34,Example1.ElectricquantityQdistributesuniformlyonasphericalsurfaceofcenterOandradiusR.Findthefieldintensity.,(1)ASphericallySymmetricChargeDistribution,Analysisthesymmetryofthefieldintensitydistribution,2020/5/14,35,Sphericalsymmetry,Themagnitudeoftheelectricfieldisconstanteverywhereontheconcentricsphericalsurface,andthefieldisnormaltothesurfaceateachpoint.,36,Selectappropriategaussiansurface.,2020/5/14,37,Note,Forauniformlychargedsphericalsurface,thefieldintheregionexternaltothesphericalsurfaceisequivalenttothatofapointchargeatthecenterofthespheresurface.,2020/5/14,38,QuickQuiz,TherearetwoconcentricchargedsphericalshellsofradiusR1andR2.Chargequantitiesdistributeuniformly.,2020/5/14,39,Example2.,AninsulatingsolidsphereofradiusrhasauniformvolumechargedensityandcarriesatotalpositivechargeQ.Calculatetheelectricfieldintensity.,Solution,Becausethechargedistributionissphericallysymmetric,weselectasphericalgaussiansurfaceofradiusr,concentricwiththesphere.,2020/5/14,40,2020/5/14,41,Theelectricfieldinsidethesphere()varieslinearlywithr.Theelectricfieldoutsidethesphere()isthesameasthatofapointchargeQlocatedatr=0.,Theexpressionsoffieldintensitymatchwhenr=a.,2020/5/14,42,(2)ACylindricallySymmetricChargeDistribution,aninfiniteuniformchargedstraightline,aninfiniteuniformchargedcylinder,Example1,Asectionofaninfinitelylongcylindricalplasticrodwithauniform+.Letusfindanexpressionforthemagnitudeoftheatadistancerfromtheaxisoftherod.,Infinitelength,2020/5/14,43,Analysisthesymmetryofthefieldintensitydistribution,2020/5/14,44,CylindricalSymmetry,Themagnitudeoftheelectricfieldisconstanteverywhereonthecoaxialcylindricalsurface,andthefieldisnormaltothesurfaceateachpoint.,2020/5/14,45,2.Selectappropriategaussiansurface:acylindricalgaussiansurfaceofradiusrandlengthlthatiscoaxialwiththelinecharge.,2020/5/14,46,?,2020/5/14,47,Thefieldintensityofaninfiniteuniformchargedstraightline:,2020/5/14,48,Example2,2020/5/14,49,QuickQuiz,ThechargedensityofaninfiniteuniformsolidchargedcylinderofradiusRis,findtheelectricfieldintensity.,2020/5/14,50,3.PlanarSy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论