2019_2020学年高中数学课时作业26正态分布的应用北师大版.docx_第1页
2019_2020学年高中数学课时作业26正态分布的应用北师大版.docx_第2页
2019_2020学年高中数学课时作业26正态分布的应用北师大版.docx_第3页
2019_2020学年高中数学课时作业26正态分布的应用北师大版.docx_第4页
2019_2020学年高中数学课时作业26正态分布的应用北师大版.docx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业(二十六)1若N(1,),6,则E()等于()A1B.C6 D36答案C解析N(1,),E()1,E()6E()6.2已知随机变量服从正态分布N(2,2),P(4)0.84,则P(0)()A0.16 B0.32C0.68 D0.84答案A解析利用正态分布图像的对称性,P(0)1P(4)10.840.16.3已知随机变量X服从正态分布N(3,1),且P(2X4)0.682 6,则P(X4)()A0.158 8 B0.158 7C0.158 6 D0.158 5答案B解析由正态密度函数的对称性知P(X4)0.158 7,故选B.4若随机变量N(0,1),则P(|3)等于()A0.997 4 B0.498 7C0.974 4 D0.002 6答案D5若随机变量N(2,4),则在区间(4,2上取值的概率等于在下列哪个区间上取值的概率()A(2,4 B(0,2C(2,0 D(4,4答案C6已知N(0,62),且P(20)0.4,则P(2)等于()A0.1 B0.2C0.6 D0.8答案A7已知一次考试共有60名同学参加,考生的成绩XN(110,52),据此估计,大约应有57人的分数在下列哪个区间内?()A(90,110 B(95,125C(100,120 D(105,115答案C解析由于XN(110,52),所以110,5,因此考试成绩在区间(105,115,(100,120,(95,125上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,成绩位于上述三个区间的人数分别是:600.682 641人,600.954 457人,600.997 460人8设离散型随机变量N(0,1),则P(0)_;P(20).而P(22)P(22)0.954 4.9某种零件的尺寸X(cm)服从正态分布N(3,1),则不属于区间(1,5)这个尺寸范围的零件约占总数的_答案4.56%解析属于区间(2,2)即区间(1,5)的取值概率约为95.44%,故不属于区间(1,5)这个尺寸范围的零件数约占总数的195.44%4.56%.10某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)XN(50,102),则他在时间段(30,70内赶到火车站的概率为_答案0.954 4解析XN(50,102),50,10.P(30X70)P(50200),若在(0,1)内取值的概率为0.4,则在(0,2)内取值的概率为_答案0.812设随机变量N(3,4),若P(c2)P(c2)P(0),若X在(0,2)内取值的概率为0.2,求(1)X在(0,4)内取值的概率;(2)P(X4)解析 (1)由于XN(2,2),对称轴x2,画出示意图,P(0X2)P(2X4),P(0X4)2P(0X4)1P(0X4)(10.4)0.3.14若在一次数学考试中,某班学生的分数为X,且XN(110,202),满分为150分,这个班的学生共有54人,求这个班在这次数学考试中及格(不小于90分)的人数和130分以上(不包括130分)的人数解析XN(110,202),110,20.P(11020130的概率为(10.682 6)0.158 7.X90的概率为0.682 60.158 70.841 3.及格的人数为540.841 345(人),130分以上的人数为540.158 79(人)15某人骑自行车上班,第一条路线较短但拥挤,到达时间X(分钟)服从正态分布N(5,1);第二条路较长但不拥挤,X服从正态分布N(6,0.16)有一天他出发时离点名时间还有7分钟,问他应选哪一条路线?若离点名时间还有6.5分钟,问他应选哪一条路线?解析还有7分钟时,若选第一条路线,X服从N(5,1),能及时到达的概率P1P(X7)P(X5)P(5X7) .P(2X2),若选第二条路线,X服从N(6,0.16),能及时到达的概率P2P(X7)P(X6)P(6X7)P(2.5X2.5)所以P19的概率,利用概率来估计样本中满足条件的汽车数量解析由题意可知N(8,2),故正态分布曲线以8为对称轴,又因为P(79)0.7,故P(9)1p(79)(10.7)0.15.故耗油量大于9升的汽车大约有1 2000.15180辆17设随机变量X服从正态分布XN(8,1),求P(5X6)解析由已知得8,1,P(6X10)0.954 4,P(5X11)0.997 4,P(5X6)P(10X11)0.997 40.954 40.043.如图,由正态曲线分布的对称性,得P(5X6)P(10X11)0.021 5.1(2011辽宁)从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)()A.B.C. D.答案B解析P(A),P(AB),P(B|A).2(2011湖北)已知随机变量服从正态分布N(2,2),且P(4)0.8,则P(02)等于()A0.6 B0.4C0.3 D0.2答案C解析根据题意,随机变量的正态分布,密度曲线关于x2对称,故P(02)P(24)P(4)P(2)0.80.50.3.3(2015新课标全国)投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A0.648 B0.432C0.36 D0.312答案A解析由题意得所求概率PC320.62(10.6)C330.630.648.4(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量服从正态分布N(,2),则P()68.26%,P(22)95.44%.)A4.56% B13.59%C27.18% D31.74%答案B解析由已知0,3.所以P(36)P(66)P(33)(95.44%68.26%)27.18%13.59%.故选B.5(2015湖南)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A2 386B2 718C3 413D4 772答案C解析由题意可得,P(0x1)P(1x1)0.341 3,设落入阴影部分的点的个数为n,则P,则n3 413,选C.6(2015湖北)设XN(1,12),YN(2,22),这两个正态分布密度曲线如下图所示下列结论中正确的是()AP(Y2)P(Y1)BP(Y2)P(X1)C对任意正数t,P(Xt)P(Yt)D对任意正数t,P(Xt)P(Yt)答案C解析由正态分布密度曲线的性质可知,XN(1,12),YN(2,22)的密度曲线分别关于直线x1,x2对称,因此结合题中所给图像可得,12,所以P(Y2)P(Y1),故A错误又XN(1,12)的密度曲线较YN(2,22)的密度曲线“瘦高”,所以1P(X1),B错误对任意正数t,P(Xt)P(Yt),P(Xt)P(Yt),C正确,D错误7(2015广东)已知随机变量X服从二项分布B(n,p)若E(X)30,D(X)20,则p_答案解析由得p.8(2012广东)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:40,50),50,60),60,70),70,80),80,90),90,100(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望解析(1)由题设可知(30.0060.01x0.054)101,解得x0.018.(2)由题设可知,成绩在区间80,90)内的人数为0.01810509,成绩在区间90,100内的人数为0.00610503,所以不低于80分的学生人数为9312,的所有可能取值为0,1,2.P(0),P(1),P(2),所以的数学期望E()012.9(2012浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和(1)求X的分布列;(2)求X的数学期望E(X)解析(1)由题意得X取3,4,5,6,且P(X3),P(X4),P(X5),P(X6).所以X的分布列为X3456P(2)由(1)知E(X)3P(X3)4P(X4)5P(X5)6P(X6).10(2012江苏)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.(1)求概率P(0);(2)求的分布列,并求其数学期望E()解析(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C32对相交棱,因此P(0).(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P().于是P(1)1P(0)P()1.所以随机变量的分布列为01P()因此E()01.11(2011山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立(1)求红队至少两名队员获胜的概率;(2)用表示红队队员获胜的总盘数,求的分布列和数学期望E()解析(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,分别表示甲不胜A、乙不胜B、丙不胜C的事件因为P(D)0.6,P(E)0.5,P(F)0.5,由对立事件的概率公式知P()0.4,P()0.5,P()0.5.红队至少两人获胜的事件有:DE,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE)P(DF)P(EF)P(DEF)0.60.50.50.60.50.50.40.50.50.60.50.50.55.(2)由题意知可能的取值为0,1,2,3.又由(1)知 F、E、D 是两两互斥事件,且各盘比赛的结果相互独立,因此P(0)P( )0.40.50.50.1,P(1)P( F)P(E)P(D )0.40.50.50.40.50.50.60.50.50.35,P(3)P(DEF)0.60.50.50.15.由对立事件的概率公式,得P(2)1P(0)P(1)P(3)0.4.所以的分布列为0123P0.10.350.40.15因此E()00.110.3520.430.151.6.12(2011江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3 500元,若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力(1)求X的分布列;(2)求此员工月工资的期望解析(1)X的所有可能取值为:0,1,2,3,4,P(Xi)(i0,1,2,3,4),即X的分布列为X01234P(2)令Y表示此员工的月工资,则Y的所有可能取值为2 100,2 800,3 500.则P(Y3 500)P(X4),P(Y2 800)P(X3),P(Y2 100)P(X2).E(Y)3 5002 8002 1002 280,所以此员工月工资的期望为2 280元13(2010广东)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495,(495,500,(510,515,由此得到样本的频率分布直方图,如图所示(1)根据频率分布直方图,求重量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率解析(1)重量超过505克的产品数量为:40(0.0550.015)400.312件(2)Y的分布列为Y012P(3)利用样本估计总体:该流水线上产品重量超过505克的概率为0.3.令为任取的5件产品中重量超过505克的产品数量,则B(5,0.3),故所求概率为P(2)C52(0.3)2(0.7)30.308 7.14(2012重庆)甲、乙两人轮流投篮,每人每次投一球约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率解析设Ak、Bk分别表示甲、乙在第k次投篮投中,则P(Ak),P(Bk)(k1,2,3)(1)记“乙获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()2()2()3()3.(2)“投篮结束时乙只投了2个球”为事件D,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()2()2()2()2().15(2011大纲全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数求X的期望解析记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买(1)P(A)0.5,P(B)0.3,CAB,P(C)P(AB)P(A)P(B)0.8.(2)D,P(D)1P(C)10.80.2,XB(100,0.2),即X服从二项分布,所以期望E(X)1000.220.16(2014福建)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:顾客所获的奖励额为60元的概率;顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由思路(1)先利用排列组合知识求出P(X60)的值,结合此值接着求出P(X20)的值后,再由分布列求期望;(2)先根据题意寻找期望为60元的可能的两种方案,然后逐一分析,求出方差,比较优劣解析(1)设顾客所获的奖励额为X.依题意,得P(X60),即顾客所获的奖励额为60元的概率为.依题意,得X的所有可能取值为20,60.P(X60),P(X20),即X的分布列为X2060P所以顾客所获的奖励额的期望为E(X)206040(元)(2)根据商场的预算,每个顾客的平均奖励额为60元,所以,先寻找期望为60元的可能方案对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100PX1的期望为E(X1)206010060,X1的方差为D(X1)(2060)2(6060)2(10060)2.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080PX2的期望为E(X2)40608060,X2的方差为D(X2)(4060)2(6060)2(8060)2.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.17(2014辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X)思路(1)结合频率分布直方图先求解概率,再利用独立事件的概率公式求解;(2)先写出分布列,再利用二项分布求解期望和方差解析(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另一天销售量低于50个”因此P(A1)(0.0060.0040.002)500.6,P(A2)0.003500.15,P(B)0.60.60.1520.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X0)C30(10.6)30.064,P(X1)C310.6(10.6)20.288,P(X2)C320.62(10.6)0.432,P(X3)C330.630.216.X分布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望E(X)30.61.8,方差D(X)30.6(10.6)0.72.18(2014安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望)思路(1)利用分类讨论的思想及相互独立事件、互斥事件的概率公式求解;(2)根据X的取值,利用概率公式求出其相应的概率,列出分布列,利用期望公式求解解析用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”则P(Ak),P(Bk),k1,2,3,4,5.(1)P(A)P(A1A2)P(B1A2A3)P(A1B2A3A4)P(A1)P(A2)P(B1)P(A2)P(A3)P(A1)P(B2)P(A3)P(A4).(2)X的可能取值为2,3,4,5.P(X2)P(A1A2)P(B1B2)P(A1)P(A2)P(B1)P(B2),P(X3)P(B1A2A3)P(A1B2B3)P(B1)P(A2)P(A3)P(A1)P(B2)P(B3),P(X4)P(A1B2A3A4 )P(B1A2B3B4)P(A1)P(B2)P(A3)P(A4)P(B1)P(A2)P(B3)P(B4),P(X5)1P(X2)P(X3)P(X4).故X的分布列为X2345PE(X)2345.19(2015新课标全国)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值 (xi)2 (wi)2 (xi)(yi) (wi)(yi)46.65636.8289.81.61 469108.8表中wi,wi.(1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利率z与x,y的关系为z0.2yx.根据(2)的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线vu的斜率和截距的最小二乘估计分别为 , .解析(1)由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型(2)令w,先建立y关于w的线性回归方程,由于d 68,c d 563686.8100.6.y关于w的线性回归方程为y 100.668w.因此y关于x的回归方程为y 100.668.(3)由(2)知x49时,年销售量y的预报值为y 100.668576.6,年利润z的预报值z 576.60.24966.32.根据(2)的结果知年利润z的预报值为z 0.2(100.668)xx13.620.12.当6.8,即x46.24时,z 取得最大值年宣传费为46.24千元时,年利率的预报值最大20(2015新课标全国)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”假设两地区用户的评价结果相互独立根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率解析(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散(2)记CA1为事件:“A地区用户的满意度等级为满意或非常满意”;CA2表示事件:“A地区用户的满意度等级为非常满意”;CB1表示事件:“B地区用户的满意度等级为不满意”;CB2表示事件:“B地区用户的满意度等级为满意”,则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,CCB1CA1CB2CA2.P(C)P(CB1CA1CB2CA2)P(CB1CA1)P(CB2CA2)P(CB1)P(CA1)P(CB2)P(CA2)由所给数据得CA1,CA2,CB1,CB2发生的频率分别为,故P(CA1),P(CA2),P(CB1),P(CB2).P(C)0.48.21(2015北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间相互独立从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙(1)求甲的康复时间不少于14天的概率;(2)如果a25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)解析设事件Ai为“甲是A组的第i个人”,事件Bi为“乙是B组的第i个人”,i1,2,7.由题意可知P(Ai)P(Bi),i1,2,7.(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5A6A7)P(A5)P(A6)P(A7).(2)设事件C为“甲的康复时间比乙的康复时间长”由题意知,CA4B1A5B1A6B1A7B1A5B2A6B2A7B2A7B3A6B6A7B6.因此P(C)P(A4B1)P(A5B1)P(A6B1)P(A7B1)P(A5B2)P(A6B2)P(A7B2)P(A7B3)P(A6B6)P(A7B6)10P(A4B1)10P(A4)P(B1).(3)a11或a18.22(2015安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)解析(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A).(2)X的可能取值为200,300,400.P(X200),P(X300),P(X400)1P(X200)P(X300)1.故X的分布列为X200300400PE(X)200300400350.23(2015四川)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生,2名女生,B中学推荐了3名男生,4名女生,两校所推荐的学生一起参加集训由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛设X表示参赛的男生人数,求X的分布列和数学期望解析(1)由题意,参加集训的男、女生各有6名代表队中的学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为.因此,A中学至少有1名学生入选代表队的概率为1.(2)根据题意,X的可能取值为1,2,3.P(X1),P(X2),P(X3).所以X的分布列为X123P因此,X的数学期望为E(X)1P(X1)2P(X2)3P(X3)1232.24(2015湖南)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖每次抽奖都是从装有4个红球,6个白球的甲箱和装有5个红球,5个白球的乙箱中,各随机摸出1个球在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望解析(1)记事件A1从甲箱中摸出的1个球是红球,A2从乙箱中摸出的1个球是红球,B1顾客抽奖1次获一等奖,B2顾客抽奖1次获二等奖,C顾客抽奖1次能获奖由题意,A1与A2相互独立,A1A2与A1A2互斥,B1与B2互斥,且B1A1A2,B2A1A2A1A2,CB1B2.因为P(A1),P(A2),所以P(B1)P(A1A2)P(A1)P(A2),P(B2)P(A1A2A1A2)P(A1A2)P(A1A2)P(A1)P(A2)P(A1)P(A2)P(A1)(1P(A2)(1P(A1)P(A2)(1)(1).故所求概率为P(C)P(B1B2)P(B1)P(B2).(2)顾客抽奖3次可视为3次独立重复实验,由(1)知,顾客抽奖1次获一等奖的概率为,所以XB(3,)于是P(X0)C30()0()3,P(X1)C31()1()2,P(X2)C32()2()1,P(X3)C33()3()0.故X的分布列为X0123PX的数学期望为E(X)3.25(2015陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25303540频数(次)20304010(1)求T的分布列与数学期望E(T);(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率解析(1)由统计结果可得T的频率分布为T(分钟)25303540频率0.20.30.40.1以频率估计概率得T的分布列为T25303540P0.20.30.40.1从而E(T)250.2300.3350.4400.132(分钟)(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”方法一:P(A)P(T1T270)P(T125,T245)P(T130,T240)P(T135,T235)P(T140,T230)0.210.310.40.90.10.50.91.方法二:P()P(T1T270)P(T135,T240)P(T140,T235)P(T140,T240)0.40.10.10.40.10.10.09.故P(A)1P()0.91.26(2015福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望解析(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A).(2)依题意得,X所有可能的取值是1,2,3.又P(X1),P(X2),P(X3)1.所以X的分布列为X123P所以E(X)123.27(2015重庆)端午节吃粽子是我国的传统习俗设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论