




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
余弦函数的图像与性质【教学目标】1.能利用单位圆中的余弦线画出余弦函数的图像.2.能类比正弦函数图像与性质得出余弦函数的性质.3.能理解余弦函数的定义域、值域、最值、周期性、奇偶性的意义.4.会求简单函数的定义域、值域、最小正周期和单调区间.【知识梳理】问题1:余弦函数的图像的作法(1)平移法:余弦函数y=cos x的图像可以通过将正弦曲线y=sin x的图像向 平移 个单位长度得到(如图).(2)五点法:余弦曲线在0,2上起作用的五个关键点分别为 .问题2:余弦函数的定义域、值域和单调区间(1)定义域为 ;(2)值域为 ;(3)单调增区间为 ,减区间为 .问题3:余弦函数的周期、奇偶性、对称轴和对称中心(1)周期T= ;(2)偶函数;(3)对称轴为 (4)对称中心为 .问题4:余弦函数的复合函数f(x)=Acos(x+)(A0,0)的对称轴、对称中心和单调区间(1)当x+=+k时,即 为对称中心;(2)当x+=k时,即 为对称轴;(3)当x+-+2k,2k时,求得x属于的区间为 区间;当x+2k,+2k时,求得x属于的区间为 区间.(注:以上kZ)【典型例题】要点一余弦函数的图像及应用例1画出ycos x(xR)的简图,并根据图像写出:(1)y时x的集合;(2)y时x的集合解:用“五点法”作出ycos x的简图(1)过点作x轴的平行线,从图像中看出:在,区间与余弦曲线交于,点,在,区间内,y时,x的集合为.当xR时,若y,则x的集合为(2)过,点分别作x轴的平行线,从图像中看出它们分别与余弦曲线交于,kZ,kZ点和,kZ,),kZ点,那么曲线上夹在对应两直线之间的点的横坐标的集合即为所求,即当y时x的集合为:.规律方法:利用三角函数的图像或三角函数线,可解简单的三角函数不等式,但需注意解的完整性跟踪演练1求函数f(x)lg cos x的定义域解由题意,x满足不等式组,即,作出ycos x的图像结合图像可得:x.要点二:余弦函数单调性的应用例2求函数ylog (cos 2x)的增区间解:由题意得cos 2x0且ycos 2x递减x只须满足:2k2x2k,kZ.kx1391360,cos 139cos 221.(2)coscoscoscos,coscoscoscos.0,且ycos x在0,上递减,coscos,即cos0,又因为1cosx1,显然3cosx0,所以xR.二、填空题7函数ycosx在区间,a上为增函数,则a的取值范围是_答案(,0解析ycosx在,0上是增函数,在0,上是减函数,只有解析coscoscos,coscoscos,由ycosx在0,上是单调递减的,所以coscos.三、解答题9若函数f(x)absinx的最大值为,最小值为,求函数y1acosbx的最值和周期解析(1)当b0时,若sinx1,f(x)max;若sinx1,f(x)min,即解得此时b10符合题意,所以y1cosx.(2)当b0时,f(x)a,这与f(x)有最大值,最小值矛盾,故b0不成立(3)当b0时,显然有解得符合题意所以y1cos(x)1cosx.综上可知,函数y1cosx的最大值为,最小值为,周期为2.一、选择题1将下列各式按大小顺序排列,其中正确的是()Acos0coscos1cos30cosBcos0coscoscos30coscos1cos30cosDcos0coscos30cos1cos答案D解析在0,上,0coscoscos10.又coscoscoscos1cos.2函数f(x)xcosx的部分图像是()答案D解析由f(x)xcosx是奇函数,可排除A,C.令x,则f()cos0.故答案选D.二、填空题3若cosx,且xR,则m的取值范围是_答案(,3解析|cosx|1,|2m1|3m2|.(2m1)2(3m2)2.m3,或m.m(,3.4设f(x)的定义域为R,最小正周期为.若f(x)则f_.答案解析T,kTk(kZ)都是yf(x)的周期,fffsinsin.三、解答题5利用余弦函数的单调性,比较cos()与cos()的大小分析利用诱导公式化为0,上的余弦值,再比较大小解析cos()coscos,cos()coscos.因为0cos,即cos()0,xR.y的定义域为R.(2)要使函数有意义,只要即由下图可得cosx的解集为x|2kx2k,kZsinx的解集为x|2kx2k,kZ它们的交集为x|2kx2k,kZ,即为函数的定义域7函数f(x)acosxcos2x(0x)的最大值为2,求实数a的值解析令tcosx,由0x,知0cosx1,即t0,1所以原函数可以转化为yt2at2,t0,1(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动纪律管理标准
- 【起重机械指挥】考试题及答案
- 医疗机构从业人员行为规范与医学伦理学
- 医师定期考核试题外科
- 服装每周工作总结
- 预防性保护文物传承的科技手段
- 风能与太阳能的互补性研究及发展趋势分析
- 音乐餐厅的设计艺术与创新思维探讨
- 顾客体验旅程与忠诚度建设策略
- 顾客服务优化策略及忠诚度提升
- 高中美术-第10课-楷书四大家教学课件设计
- 2023春国家开放大学-04019管理英语3-期末考试题带答案
- 构成设计-色彩知识
- 2023-2024学年江苏省江阴市小学语文五年级期末通关模拟题附参考答案和详细解析
- 语用学教程课件
- 《液压与气压传动》课程建设方案
- 国家开放大学《农村政策法规》形成性考核(平时作业)参考答案
- 苯甲苯二元系物精馏设计化工原理课程设计
- 围挡施工技术交底参考及围挡施工图
- 完整三字经全文解释ppt课件-完整三字经全文解释
- 东南大学-实验五-Matlab-Simulink仿真实验报告
评论
0/150
提交评论