


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版初二数学 2004/9/17 星期五2.3立方根教学目标1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.教学重点和难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教学过程设计一、复习:请同学回答下列问题:(1)什么叫一个数a的平方根?如何用符号表示数a(0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a0时,式子a,a,a,的意义各是什么?答:(1)如果一个数x的平方等于a,即x2=a,那么x叫做a的平方根,表示为x=a.(2)正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0.(3)a0,a表示a的算术平方根,a表示a的负平方根,a表示a的平方根.二、引入新课1.计算下列各题:(1) ;(2) ;(3) .答:(1) =0.001;(2) =827;(3) =0.指出:上面各题是已知底数和乘方指数求三次幂的运算,也叫乘方运算.怎样求下列括号内的数?各题中已知什么?求什么?(1)()3=18;(2)()3=27 125;(3)()3=0.答:已知乘方指数和3次幂,求底数,也就是“已知某数的立方,求某数”.设某数为x,则(1)式为 =18,求x;(2)式为=27125,求x;(3)式为x3=0求x。2.立方根的概念.一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果=a,那么x叫做a的立方根.数a的立方根用符号“”表示,读作“三次根号a,其中a是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、讲解例题:例1 求下列各数的立方根:(1)8;(2)8;(3)0.125;(4)27125;(5)0.分析:求一个数的立方根,我们可以通过立方运算来求.解 (1)因为=8,所以8的立方根是2,即=2.问:除2以外,还有什么数的立方等于8?也就是说,正数8还有别的立方根吗?答:除2以外,没有其它的数的立方等于8,也就是说,正数8的立方根只有一个.(2)因为=8,所以8的立方根是2即=2问:除2以外,还有什么数的立方等于8?,也就是说,负数8还有别的立方根吗?答:除2以外,没有其他的数的立方等于8,也就是说,8的立方根只有1个.(3)因为=0.125,所以0.125的立方根是0.5,即=0.5.(4)因为()3=,所以27 125的立方根是35,即=.(5)因为=0,所以0的立方根是0,即=0.问:一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?答:正数有一个正的立方根;负数有一个负的立方根;零的立方根仍旧是零.指出:立方根的个数的性质可以概括为立方根的唯一性,即一个数的立方根是唯一的.例2 求下列各式的值:(1) ;(2) ;(3) .解 (1)327=3;(2) =4; (3) =-四、随堂练习1.判断题:(1)4的平方根是2;()(2)8的立方根是2;()(3)0.064的立方根是0.4;() (4)127的立方根是13()(5)的平方根是4;(); (6)12是144的平方根.()2.选择题:(1)数0.的立方根是().A.0.5B.0.5C.0.05D.0.005(2)下列判断中错误的是()A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根3.求下列各数的立方根:(1)27;(2)38;(3)1;(4)0.4.求下列各式的值:(1)100; (2) ;(3) ;(4) ;(5) ;五、小结请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?2.数的立方根与数的平方根有什么区别?答:1.如果一个数的立方等于a,这个数就叫做a的立方根,用符号3a表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑表皮参数化几何立体组在极端气候下的热力学耦合问题
- 建筑声学环境对别墅对讲机语音清晰度的二次干扰
- 应急救灾制服在极端温湿度变化下的生理舒适性动态调节机制
- 工业级设备能耗与余热回收系统协同设计瓶颈
- 工业物联网架构中输入板与云平台的安全通信协议适配难题
- 广东省廉江市实验学校高中政治 2.1 影响价格的因素2说课稿(必修1)
- 老旧电梯改造项目质量监督管理方案
- 美容仪器2025年市场策略报告:技术创新与推广新趋势
- 莱芜技师电工试题及答案
- 12.3 角的平分线的性质(1) 说课稿 2024-2025学年人教版八年级数学上册
- 增生性肌炎的超声表现
- 部编小学语文一年级上册课程纲要
- 司法鉴定所管理制度
- 特殊感染处理
- 面神经炎教学护理查房
- T/CACE 009-2017清洁生产管理体系要求
- 2025届中考历史全真模拟卷【海南专用】(含答案)
- 气瓶安全协议书
- 锚杆锚索施工合同协议
- 2025-2030年中国吉林汽车零部件产业发展分析及投资前景调研报告
- 2025-2030曲线显示设备行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论