




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七彩教育网 本资料来源于七彩教育网全国初中(初一)数学竞赛辅导第五讲 方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍例1 解方程组解 将原方程组改写为由方程得x=6+4y,代入化简得11y-4z=-19 由得2y+3z=4 3+4得33y+8y=-57+16,所以 y=-1将y=-1代入,得z=2将y=-1代入,得x=2所以为原方程组的解说明 本题解法中,由,消x时,采用了代入消元法;解,组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快例2 解方程组解法1 由,消x得由,消元,得解之得将y=2代入得x=1将z=3代入得u=4所以解法2 由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x, 即x=-15+16x,解之得x=1将x=1代入得u=4将u=4代入得z=3将z=3代入得y=2所以为原方程组的解解法3 +得x+y+z+u=10, 由-(+)得y+u=6, 由2-得4y-u=4, +得y=2以下略说明 解法2很好地利用了本题方程组的特点,解法简捷、流畅例3 解方程组分析与解 注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程: +得x+u=3, +得y+v=5, +得z+x=7, +得u+y=9 又+得x+y+z+u+v=15 -得z=7,把z=7代入得x=0,把x=0代入得u=3,把u=3代入得y=6,把y=6代入得v=-1所以为原方程组的解例4 解方程组解法1 2+得由得代入得为原方程组的解为原方程组的解说明 解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程 例5 已知分析与解 一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形-消去x得3+消去y得5+3消去z得 例6 已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解分析 与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零解 由得2y=(1+a)-ax, 将代入得(a-2)(a+1)x=(a-2)(a+2) (1)当(a-2)(a+1)0,即a2且a-1时,方程有因而原方程组有唯一一组解(2)当(a-2)(a+1)=0且(a-2)(a+2)0时,即a=-1时,方程无解,因此原方程组无解(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程有无穷多个解,因此原方程组有无穷多组解例7 已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解解法1 根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)3+(a+2)(-1)+5-2a=0所以对任何a值都是原方程的解说明 取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似解法2 可将原方程变形为a(x+y-2)-(x-2y-5)=0由于公共解与a无关,故有例8 甲、乙两人解方程组原方程的解分析与解 因为甲只看错了方程中的a,所以甲所得到的解4(-3)-b(-1)=-2 a5+54=13 解由,联立的方程组得所以原方程组应为练习五1解方程组2若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值3将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4k为何值时,方程组有唯一一组解;无解;无穷多解?5若方程组的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寿险诚信合规课件
- 执业中药师考试培训班排名:揭秘高效通关秘籍
- 湖南省长沙市望城区第二中学2024-2025学年高一上学期期末考试历史试题(含答案)
- 湖北省黄冈市浠水县实验高级中学2024-2025学年高二上学期九月月考历史试卷(含答案)
- 档案组织培训方案(3篇)
- 项目物流规划方案(3篇)
- 水果配送订制方案(3篇)
- 古镇民宿规划方案(3篇)
- 引才大使选聘方案(3篇)
- 小区水体模型制作方案(3篇)
- 车间现场品质培训
- 央视中秋诗会活动方案
- 脑转移瘤护理查房
- 2025至2030年中国未来产业市场运营态势及发展趋向研判报告
- 沪阿姨奶茶管理制度
- 2025至2030中国乙醇行业市场深度调研及发展趋势与投资方向报告
- 温州科目一试题及答案
- 2025年中国钒催化剂行业市场前景预测及投资价值评估分析报告
- (高清版)DGJ 08-100-2003 低压用户电气装置规程
- 2025高中数学教师课标考试模拟试卷及答案(五套)
- 客运专线铁路四电工程监理实施详尽细则
评论
0/150
提交评论