




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版初中八年级数学20122013年上册确定位置培优单元测试(含答案)一选择题(共10小题)1如图1,坐标平面内一点A(2,1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A2 B3 C4 D52在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(a,b)如:f(1,3)=(1,3);2、g(a,b)=(b,a)如:g(1,3)=(3,1);3、h(a,b)=(a,b)如:h(1,3)=(1,3)按照以上变换有:f(g(2,3)=f(3,2)=(3,2),那么f(h(5,3)等于() A(5,3) B(5,3) C(5,3) D(5,3) 3如图2,菱形OABC的顶点O在坐标原点,顶点A在x轴上,B=120,OA=2,将菱形OABC绕原点顺时针旋转105至OABC的位置,则点B的坐标为()A(,)B(,)C(2,2)D(,)4定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是()A2 B1 C4 D35 如图3,A(,1),B(1,)将AOB绕点O旋转150得到AOB,则此时点A的对应点A的坐标为()A(,1) B(2,0) C(1,)或(2,0) D(,1)或(2,0) 图1 图2 图36若以A(0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在() A第一象限B第二象限C第三象限D第四象限7如图4,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C若点C的坐标为(m1,2n),则m与n的关系为() Am+2n=1 Bm2n=1 C2nm=1Dn2m=18如图5在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E那么点D的坐标为()ABCD9在一次“寻宝”人找到了如图6所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A(1,0) B(5,4) C(1,0)或(5,4) D(0,1)或(4,5)10如图7,在方格纸上DEF是由ABC绕定点P顺时针旋转得到的如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A(5,2)B(2,5)C(2,1)D(1,2) 图4 图5 图6 图7 二填空题(共5小题)11点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示若P是x轴上使得|PAPB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OPOQ=_12(2012鸡西)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为_13如图,在一单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,都是斜边在x轴上、斜边长分别为2,4,6,的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2012的坐标为_14如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=_时,AC+BC的值最小14如图,在AOB中,AOB=90,OA=3,OB=4将AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图、图、,则旋转得到的图的直角顶点的坐标为_15如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5个单位至点A4(3,2),依此规律跳动下去,点A第100次跳动至点A100的坐标是_三解答题(共5小题)16已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动当ODP是腰长为5的等腰三角形时,求点P的坐标17阅读材料:例:说明代数式的几何意义,并求它的最小值解:=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值设点A关于x轴的对称点为A,则PA=PA,因此,求PA+PB的最小值,只需求PA+PB的最小值,而点A、B间的直线段距离最短,所以PA+PB的最小值为线段AB的长度为此,构造直角三角形ACB,因为AC=3,CB=3,所以AB=3,即原式的最小值为3根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B_的距离之和(填写点B的坐标)(2)代数式的最小值为_18在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C(1)若A点的坐标为(1,2),请你在给出的坐标系中画出ABC设AB与y轴的交点为D,则=_;(2)若点A的坐标为(a,b)(ab0),则ABC的形状为_19在平面直角坐标系中,ABC的三个顶点的坐标是A(2,3),B(4,1),C(2,0),将ABC平移至A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1)则点C1的坐标为_20在直角坐标系中,C(2,3),C(4,3),C(2,1),D(4,1),A(0,a),B(a,O)(a0)(1)结合坐标系用坐标填空点C与C关于点_对称; 点C与C关于点_对称;点C与D关于点_对称;(2)设点C关于点(4,2)的对称点是点P,若PAB的面积等于5,求a值北师大版初中八年级数学20122013年上册确定位置培优单元测试参考答案与试题解析一选择题(共12小题)1(2010荆门)如图,坐标平面内一点A(2,1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A2 B3 C4 D5考点:等腰三角形的判定;坐标与图形性质。专题:动点型。分析:根据题意,结合图形,分两种情况讨论:OA为等腰三角形底边;OA为等腰三角形一条腰解答:解:如上图:OA为等腰三角形底边,符合符合条件的动点P有一个;OA为等腰三角形一条腰,符合符合条件的动点P有三个综上所述,符合条件的点P的个数共4个故选C点评:本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解2(2009济南)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(a,b)如:f(1,3)=(1,3);2、g(a,b)=(b,a)如:g(1,3)=(3,1);3、h(a,b)=(a,b)如:h(1,3)=(1,3)按照以上变换有:f(g(2,3)=f(3,2)=(3,2),那么f(h(5,3)等于()A(5,3)B(5,3)C(5,3)D(5,3)考点:点的坐标。专题:新定义。分析:先根据题例中所给出点的变换求出h(5,3)=(5,3),再代入所求式子运算f(5,3)即可解答:解:按照本题的规定可知:h(5,3)=(5,3),则f(5,3)=(5,3),所以f(h(5,3)=(5,3)故选B点评:本题考查了依据有关规定进行推理运算的能力,解答时注意按照从里向外依次求解,解答这类题往往因对题目中的规定的含义弄不清楚而误选其它选项3(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,B=120,OA=2,将菱形OABC绕原点顺时针旋转105至OABC的位置,则点B的坐标为()A(,)B(,)C(2,2)D(,)考点:坐标与图形变化-旋转;菱形的性质。分析:首先连接OB,OB,过点B作BEx轴于E,由旋转的性质,易得BOB=105,由菱形的性质,易证得AOB是等边三角形,即可得OB=OB=OA=2,AOB=60,继而可求得AOB=45,由等腰直角三角形的性质,即可求得答案解答:解:连接OB,OB,过点B作BEx轴于E,根据题意得:BOB=105,四边形OABC是菱形,OA=AB,AOB=AOC=ABC=120=60,OAB是等边三角形,OB=OA=2,AOB=BOBAOB=10560=45,OB=OB=2,OE=BE=OBsin45=2=,点B的坐标为:(,)故选A点评:此题考查了旋转的性质、菱形的性质、等边三角形的判定与性质以及等腰直角三角形性质此题难度不大,注意掌握旋转前后图形的对应关系,注意辅助线的作法4(2012随州)定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是()A2B1C4D3考点:点的坐标;点到直线的距离。专题:新定义。分析:画出两条相交直线,到l1的距离为2的直线有2条,到l2的距离为3的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数解答:解:如图所示,所求的点有4个,故选C点评:综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点5(2012牡丹江)如图,A(,1),B(1,)将AOB绕点O旋转150得到AOB,则此时点A的对应点A的坐标为()A(,1)B(2,0)C(1,)或(2,0)D(,1)或(2,0)考点:坐标与图形变化-旋转。专题:分类讨论。分析:根据点A、B的坐标求出OA与x轴正半轴夹角为30,OB与y轴正半轴夹角为30,从而得到AOB=30,再利用勾股定理求出OA、OB的长度,然后分顺时针旋转时,点A与点B关于坐标原点O成中心对称,然后根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;逆时针旋转时,点A在x轴负半轴上,然后写出点A的坐标即可解答:解:A(,1),B(1,),tan=,OA与x轴正半轴夹角为30,OB与y轴正半轴夹角为30,AOB=903030=30,根据勾股定理,OA=2,OB=2,如图1,顺时针旋转时,150+30=180,点A、B关于原点O成中心对称,点A(1,);如图2,逆时针旋转时,150+30=180,点A在x轴负半轴上,点A的坐标是(2,0)综上所述,点A的坐标为(1,)或(2,0)故选C点评:本题考查了坐标与图形的变化旋转,根据角度度数判断出点A的位置是解题的关键,要注意分情况讨论求解6(2012广元)若以A(0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在()A第一象限B第二象限C第三象限D第四象限考点:平行四边形的判定;坐标与图形性质。专题:数形结合。分析:令点A为(0.5,4),点B(2,0),点C(0,1),以BC为对角线作平行四边形,以AC为对角线作平行四边形,以AB为对角线作平行四边形,从而得出点D的三个可能的位置,由此可判断出答案解答:解:根据题意画出图形,如图所示:分三种情况考虑:以CB为对角线作平行四边形ABD1C,此时第四个顶点D1落在第一象限;以AC为对角线作平行四边形ABCD2,此时第四个顶点D2落在第二象限;以AB为对角线作平行四边形ACBD3,此时第四个顶点D3落在第四象限,则第四个顶点不可能落在第三象限故选C点评:本题考查了平行四边形的性质及坐标的性质,利用了数形结合的数学思想,学生做题时注意应以每条边为对角线分别作平行四边形,不要遗漏7(2012长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C若点C的坐标为(m1,2n),则m与n的关系为()Am+2n=1Bm2n=1C2nm=1Dn2m=1考点:全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高。分析:根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案解答:解:OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,C点在BOA的角平分线上,C点到横纵坐标轴距离相等,进而得出,m1=2n,即m2n=1故选:B点评:此题主要考查了角平分线的性质以及坐标点的性质,利用角平分线的作法得出C点坐标性质是解题关键8(2011内江)如图在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E那么点D的坐标为()ABCD考点:翻折变换(折叠问题);坐标与图形性质。专题:计算题;综合题。分析:如图,过D作DFAF于F,根据折叠可以证明CDEAOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明AEOADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标解答:解:如图,过D作DFAF于F,点B的坐标为(1,3),AO=1,AB=3,根据折叠可知:CD=OA,而D=AOE=90,DEC=AEO,CDEAOE,OE=DE,OA=CD=1,设OE=x,那么CE=3x,DE=x,在RtDCE中,CE2=DE2+CD2,(3x)2=x2+12,x=,又DFAF,DFEO,AEOADF,而AD=AB=3,AE=CE=3=,即,DF=,AF=,OF=1=,D的坐标为(,)故选A点评:此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题9(2010遵义)在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A(1,0)B(5,4)C(1,0)或(5,4)D(0,1)或(4,5)考点:坐标确定位置。分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答解答:解:A、d=,d=,正确,但不全面,故选项错误;B、d=,d=,正确,但不全面,故选项错误;C、由上面的回答,可知此选项正确且全面,故选项正确;D、d=,d=,故D答案不正确,故选C点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题10(2010宜昌)如图,在方格纸上DEF是由ABC绕定点P顺时针旋转得到的如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A(5,2)B(2,5)C(2,1)D(1,2)考点:坐标与图形变化-旋转。分析:如图,分别连接AD、CF,然后作它们的垂直平分线即可得到它们的旋转中心P,然后利用已知坐标即可求出P的坐标解答:解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道ABC绕P点顺时针旋转90得到DEF,P的坐标为(5,2)故选A点评:本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心P,旋转方向顺时针,旋转角度90,通过画图即可得P点坐标二填空题(共6小题)11(2012莆田)点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示若P是x轴上使得|PAPB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OPOQ=5考点:轴对称-最短路线问题;坐标与图形性质。专题:探究型。分析:连接AB并延长交x轴于点P,作A点关于y轴的对称点A连接AB交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论解答:解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PAPB|的值最大的点,点B是正方形的中点,点P即为AB延长线上的点,此时P(3,0)即OP=3;作A点关于y轴的对称点A连接AB交y轴于点Q,则AB即为QA+QB的最小值,A(1,2),B(2,1),设过AB的直线为:y=kx+b,则,解得,Q(0,),即OQ=,OPOQ=3=5故答案为:5点评:本题考查的是轴对称最短路线问题,根据题意得出P、Q两点的坐标是解答此题的关键12(2012鸡西)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2012的坐标为(21006,21006)考点:正方形的性质;坐标与图形性质。专题:规律型。分析:首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2012的坐标解答:解:正方形OABC边长为1,OB=,正方形OBB1C1是正方形OABC的对角线OB为边,OB1=2,B1点坐标为(0,2),同理可知OB2=2,B2点坐标为(2,2),同理可知OB3=4,B3点坐标为(4,0),B4点坐标为(4,4),B5点坐标为(0,8),B6(8,8),B7(16,0)B8(16,16),B9(0,16),由规律可以发现,每经过9次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,20129=2235,B2012的纵横坐标符号与点B4的相同,纵横坐标都是负值,B2012的坐标为(21006,21006)故答案为(21006,21006)点评:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过9次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大13(2012德州)如图,在一单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,都是斜边在x轴上、斜边长分别为2,4,6,的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2012的坐标为(2,1006)考点:等腰直角三角形;点的坐标。专题:规律型。分析:由于2012是4的倍数,故A1A4;A5A8;每4个为一组,可见,A2012在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答解答:解:2012是4的倍数,A1A4;A5A8;每4个为一组,A2012在x轴上方,横坐标为2,A4、A8、A12的纵坐标分别为2,4,6,A12的纵坐标为2012=1006故答案为(2,1006)点评:本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答14(2011营口)如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=时,AC+BC的值最小考点:轴对称-最短路线问题;两点间的距离公式。分析:先作出点A关于y=1的对称点A,再连接AB,求出直线AB的函数解析式,再把y=1代入即可得解答:解:作点A关于y=1的对称点A(1,0),连接AB交y=1于C,解得:,直线AB的函数解析式为:y=x,把C的坐标(a,1)代入解析式可得,a=故答案为:点评:此题主要考查了轴对称最短路线问题,综合运用了一次函数的知识15(2011莱芜)如图,在AOB中,AOB=90,OA=3,OB=4将AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图、图、,则旋转得到的图的直角顶点的坐标为(36,0)考点:旋转的性质;坐标与图形性质;勾股定理。专题:规律型。分析:如图,在AOB中,AOB=90,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图、的直角顶点坐标为(12,0),图、的直角顶点坐标为(24,0),所以,图、10的直角顶点为(36,0)解答:解:在AOB中,AOB=90,OA=3,OB=4,AB=5,图、的直角顶点坐标为(12,0),每旋转3次为一循环,图、的直角顶点坐标为(24,0),图、的直角顶点为(36,0)故答案为:(36,0)点评:本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键19(2011锦州)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5个单位至点A4(3,2),依此规律跳动下去,点A第100次跳动至点A100的坐标是(51,50)考点:坐标与图形性质;规律型:图形的变化类。专题:规律型。分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可解答:解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),第100次跳动至点的坐标是(51,50)故答案为:(51,50)点评:本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键三解答题(共8小题)16已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动当ODP是腰长为5的等腰三角形时,求点P的坐标考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理。分析:根据当OP=OD时,以及当OD=PD时和当OP=PD时,分别进行讨论得出P点的坐标解答:解:过P作PMOA于M(1)当OP=OD时,OP=5,CO=4,易得CP=3,P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,易得MD=3,从而CP=2或CP=8,P(2,4)或(8,4);(3)当OP=PD时,易得OM=CP=DO=2.5,OP=5,不合题意,舍去综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4),点评:此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键17(2012十堰)阅读材料:例:说明代数式的几何意义,并求它的最小值解:=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值设点A关于x轴的对称点为A,则PA=PA,因此,求PA+PB的最小值,只需求PA+PB的最小值,而点A、B间的直线段距离最短,所以PA+PB的最小值为线段AB的长度为此,构造直角三角形ACB,因为AC=3,CB=3,所以AB=3,即原式的最小值为3根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和(填写点B的坐标)(2)代数式的最小值为10考点:轴对称-最短路线问题;坐标与图形性质。专题:探究型。分析:(1)先把原式化为+的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为+的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可解答:解:(1)原式化为+的形式,代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和,故答案为(2,3);(2)原式化为+的形式,所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A,则PA=PA,PA+PB的最小值,只需求PA+PB的最小值,而点A、B间的直线段距离最短,PA+PB的最小值为线段AB的长度,A(0,7),B(6,1)A(0,7),AC=6,BC=8,AB=10,故答案为:10点评:本题考查的是轴对称最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解18(2012吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C(1)若A点的坐标为(1,2),请你在给出的坐标系中画出ABC设AB与y轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab0),则ABC的形状为直角三角形考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标。专题:作图题。分析:(1)由A点的坐标为(1,2),而点A关于y轴的对称点为点B,点A关于原点O的对称点为点C,根据关于原点对称的坐标特点得到B点坐标为(1,2),C点坐标为(1,2),则D点坐标为(0,2),利用三角形面积公式有SADO=ODAD=21=1,SABC=BCAB=42=4,即可得到=;(2)点A的坐标为(a,b)(ab0),则B点坐标为(a,b),C点坐标为(a,b),则ABx轴,BCy轴,AB=2|a|,BC=2|b|,得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论