全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中人教版数学圆的一般方程听课记录课题引入:问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式圆的一般方程。探索研究:请同学们写出圆的标准方程:(xa)2(yb)2=r2,圆心(a,b),半径r把圆的标准方程展开,并整理:x2y22ax2bya2b2r2=0取得这个方程是圆的方程反过来给出一个形如x2y2DxEyF=0的方程,它表示的曲线一定是圆吗?把x2y2DxEyF=0配方得 (配方过程由学生去完成)这个方程是不是表示圆?(1)当D2E24F0时,方程表示(1)当时,表示以(-,-)为圆心,为半径的圆;(2)当时,方程只有实数解,即只表示一个点(-,-);(3)当时,方程没有实数解,因而它不表示任何图形综上所述,方程表示的曲线不一定是圆只有当时,它表示的曲线才是圆,我们把形如的表示圆的方程称为圆的一般方程我们来看圆的一般方程的特点:(启发学生归纳)(1)x2和y2的系数相同,不等于0没有xy这样的二次项(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。知识应用与解题研究:例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。学生自己分析探求解决途径:、用配方法将其变形化成圆的标准形式。、运用圆的一般方程的判断方法求解。但是,要注意对于来说,这里的.例2:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程解:设所求的圆的方程为:在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)学生讨论交流,归纳得出使用待定系数法的一般步骤:1. 根据提议,选择标准方程或一般方程;2. 根据条件列出关于a、b、r或D、E、F的方程组;3. 解出a、b、r或D、E、F,代入标准方程或一般方程。例3、已知线段AB的端点B的坐标是(4,3),端点A在圆上运动,求线段AB的中点M的轨迹方程。分析:如图点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满足方程。建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M的轨迹方程。解:设点M的坐标是(x,y),点A的坐标是上运动,所以点A的坐标满足方程,即把代入,得课堂练习:课堂练习第1、2、3题小结 :1对方程的讨论(什么时候可以表示圆)。 2与标准方程的互化3用待定系数法求圆的方程4求与圆有关的点的轨迹。课后作业:习题4.1第2、3、6题课后反思:本节课是在学习了圆的标准方程的基础上继续学习圆的一般方程,难度不大,学生接受起来容易,但要理解方程表示圆是有条件的,这是学生容易忽略的;同时要让学生明白标准方程与一般方程的几何特征与代数特征,能根据题目条件正确选择。听课点评: 成功之处:“圆的一般方程”一节课是高二数学中圆锥曲线的一个重要内容。通过对这一节课的学习,既可以让学生接受、理解圆的一般方程的求法及圆的一般方程圆的特点,又可使学生加深对圆的一般方程同圆的标准方程间的相互转化,还为日后解决解析几何综合题的教学做好准备,起到承上启下的重要作用。根据本节课的内容及学生的实际水平,我采取提出问题引导发现式教学方法,提出问题让学生思考得出答案,并让学生自己动手操作解决问题。教学过程本文来自优秀教育资源网中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”,通过自己动脑和动手解决了问题,体验到成功的快乐和喜悦采取这种形式,可以极大提高学生的学习兴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业机器人运维招聘题库及答案
- 2025年文化和旅游部直属事业单位招聘21人参考题库附答案详解(b卷)
- 2026年重庆工信职业学院单招职业倾向性考试题库完美版
- 2026年福建华南女子职业学院单招职业适应性测试必刷测试卷完美版
- 风险控制招聘真题及答案
- 2026年安徽省芜湖市单招职业倾向性考试必刷测试卷新版
- 2026年四川信息职业技术学院单招职业适应性测试必刷测试卷必考题
- 2025广东省总工会事务中心第二次招聘合同制紧缺工作人员1人参考题库有完整答案详解
- 2025广东中山市沙溪镇招聘合同制工作人员1人(第五期)参考题库含答案详解(综合卷)
- 2025广西南宁市马山县人力资源和社会保障局招聘外聘人员1人参考题库含答案详解(基础题)
- DB5301∕T 24-2019 园林绿化养护规范
- 2025年笔记本行业研究报告及未来行业发展趋势预测
- 锅炉维护保养课件
- GB/T 46142-2025智慧城市基础设施智慧交通快速响应矩阵码应用指南
- 2025市场监管面试题及答案
- 2025年虚拟电厂投标文件技术标-方案设计
- 围墙挡土墙鉴定方案(3篇)
- 非煤矿山防治水培训课件
- 2025年数据标注与审核项目可行性分析报告
- 2025年湖南公务员考试申论真题(行政执法卷)解析+答题示范
- 江苏省苏州市虎丘区立达中学2025届七上数学期末质量检测试题含解析
评论
0/150
提交评论