全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必修2 圆与方程 1. 圆的标准方程:以点为圆心,为半径的圆的标准方程是. 特例:圆心在坐标原点,半径为的圆的方程是:.2. 点与圆的位置关系: (1). 设点到圆心的距离为d,圆半径为r: a.点在圆内 dr; b.点在圆上 d=r; c.点在圆外 dr (2). 给定点及圆. 在圆内 在圆上 在圆外(3)涉及最值:1 圆外一点,圆上一动点,讨论的最值2 圆内一点,圆上一动点,讨论的最值 思考:过此点作最短的弦?(此弦垂直)3. 圆的一般方程: .(1) 当时,方程表示一个圆,其中圆心,半径.(2) 当时,方程表示一个点.(3) 当时,方程不表示任何图形.注:方程表示圆的充要条件是:且且.4. 直线与圆的位置关系: 直线与圆 圆心到直线的距离1);2);3);弦长|AB|=2还可以利用直线方程与圆的方程联立方程组求解,通过解的个数来判断:(1)当时,直线与圆有2个交点,直线与圆相交;(2)当时,直线与圆只有1个交点,直线与圆相切;(3)当时,直线与圆没有交点,直线与圆相离;5. 两圆的位置关系(1)设两圆与圆, 圆心距1 ;2 ;3 ;4 ;5 ; 外离 外切 相交 内切 (2)两圆公共弦所在直线方程圆:, 圆:,则为两相交圆公共弦方程.补充说明:1 若与相切,则表示其中一条公切线方程;2 若与相离,则表示连心线的中垂线方程.(3)圆系问题过两圆:和:交点的圆系方程为()补充:1 上述圆系不包括;2 2)当时,表示过两圆交点的直线方程(公共弦)3 过直线与圆交点的圆系方程为6. 过一点作圆的切线的方程:(1) 过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,即求解k,得到切线方程【一定两解】例1. 经过点P(1,2)点作圆(x+1)2+(y2)2=4的切线,则切线方程为 。(2) 过圆上一点的切线方程:圆(xa)2+(yb)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0a)(xa)+(y0b)(yb)= r2 特别地,过圆上一点的切线方程为.例2.经过点P(4,8)点作圆(x+7)2+(y+8)2=9的切线,则切线方程为 。7切点弦(1)过C:外一点作C的两条切线,切点分别为,则切点弦所在直线方程为:8. 切线长:若圆的方程为(x-a)2+(y-b)2=r2,则过圆外一点P(x0,y0)的切线长为 d=9. 圆心的三个重要几何性质:1 圆心在过切点且与切线垂直的直线上;2 圆心在某一条弦的中垂线上;3 两圆内切或外切时,切点与两圆圆心三点共线。10. 两个圆相交的公共弦长及公共弦所在的直线方程的求法例.已知圆C1:x2 +y2 2x =0和圆C2:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肿瘤放射治疗常见问题及解决方案
- 消防联动系统检测及验收流程标准
- 商务接待礼仪技巧大全
- 五年级英语期末复习及测试题
- 《血液、血管和心脏(第1课时)》名师课件
- 退休妇女活动策划方案
- 直播服装活动方案
- 近期珠宝代言活动方案
- 疫情酒吧活动方案
- 带式压滤机运行维护操作指南
- 2025河北廊坊三河市公安局招聘警务辅助人员200人考试参考题库及答案解析
- 农田土地翻耕合同范本
- 软件产品项目管理方案
- 2025年城市地下综合管廊建设财务可持续性研究报告
- 6.2 学会依法办事 课件-2025-2026学年统编版道德与法治 八年级上册
- 直肠癌经典表现课件
- 2025江西南昌市青山湖区招聘社区工作者(专职网格员)45人考前自测高频考点模拟试题及参考答案详解一套
- 校长在学生行为规范与纪律教育专题大会上的讲话
- 梨绣病课件教学课件
- 基础生命体征解读
- 消化道出血护理ppt(共17张PPT)
评论
0/150
提交评论