




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微分方程建模(传染病模型)的求解。1、模型1:SI模型。假设:(1)时刻人群分为易感者(占总人数比例的)和已感染者(占总人数比例的)(2)每个病人每天有效接触的平均人数是常数,称为日接触率,当健康者与病人接触时,健康者受感染成为病人。分析:根据假设,每个患者每天可以使个健康者变为病人,因为病人数为,所以每天共有个健康者变为病人。即:,且,设初始时刻病人比例为,则:,用MATLAB解此微分方程: syms a b f=dsolve(Dy=a*y*(1-y),y(0)=b,t)f = 1/(1-exp(-a*t)*(-1+b)/b) %当时,分别在坐标系中作出的图像,坐标系中作出的图像, a=0.1; b=0.09; h=dsolve(Dy=a*y*(1-y),y(0)=b,t)h =1/(1-exp(-a*t)*(-1+b)/b) f=subs(h)f =1/(1+91/9*exp(-1/10*t)的图像 ezplot(f,0,60) grid on figure (2) fplot(0.1*y*(1-y),0,1) grid on的图像模型分析:(1)当时,达到最大值,则此时病人增速最快。 (2)当时,即所有的人被传染,全部变为病人,这显然是不符合实际的,其原因是没有考虑到病人可以治愈,人群中的健康者只能变为病人,而病人不会变为健康者。2、模型2:SIS模型。假设:(1)时刻人群分为易感者(占总人数比例的)和已感染者(占总人数比例的)(2)每个病人每天有效接触的平均人数是常数,称为日接触率,当健康者与病人接触时,健康者受感染成为病人。(3)病人每天被治愈的占病人总数的比例为,称为日治愈率,显然为这种传染病的平均传染期。则。则建立微分方程模型为:用MATLAB解此微分方程: h2=dsolve(Dy=a*y*(1-y)-c*y,y(0)=b,t)h2 =(a-c)/(a-exp(-(a-c)*t)*(-a+c+b*a)/b/(a-c)*a+exp(-(a-c)*t)*(-a+c+b*a)/b/(a-c)*c) pretty(h2) / exp(-(a - c) t) (-a + c + b a) a (a - c)/|a - - b (a - c) exp(-(a - c) t) (-a + c + b a) c + -| b (a - c) /化简:即:。当(1)时,;(2)时, clear h2=dsolve(Dy=a*y*(1-y)-a*y,y(0)=b,t)h2 =1/(a*t+1/b)即:。定义:一个传染期内每个病人有效接触的平均人数。则:,用MATLAB作图像:令,() clear a=0.01;b=0.7;c=0.05; h2=dsolve(Dy=a*y*(1-y)-c*y,y(0)=b,t); h22=subs(h2) h22 = -1/25/(1/100-47/700*exp(1/25*t) ezplot(h22,0,120) grid on的图像令,分别作图() a=0.3;b=0.7;c=0.15; h2=dsolve(Dy=a*y*(1-y)-c*y,y(0)=b,t); h23=subs(h2) h23 = 3/20/(3/10-3/35*exp(-3/20*t) subplot(2,1,1) ezplot(h23,0,25) grid on b=0.3; h24=subs(h2); subplot(2,1,2) ezplot(h24,0,25)grid on的图像(上面,下面)模型分析:(1)时,病人比例越来越少,最终趋于零,这是因为传染期内经有效接触从而使健康者变为病人数不超过原来病人数的缘故。(2)时,病人比例增减性是由来决定,其极限值随着的增加而增加。3、模型3:SIR模型。假设:(1)人群分为健康者,其比例、病人、病愈免疫的移出者。 (2)病人的日接触率为,日治愈率为,传染期接触数为。则,对于病愈者而言,设初始时刻的健康者和病人的比例为和,则建立微分方程模型为:由于此微分方程组的解析解无法求出,则转为相平面上讨论解的性质。相轨线的定义域应为:,由方程组消去并将得:用matlb求解: dsolve(Dy=1/cma/s-1,y(s0)=y0,s)ans =1/cma*log(s)-s-1/cma*log(s0)+s0+y0 pretty(ans) log(s) log(s0) - - s - - + s0 + y0 cma cma即(相轨线)定义域内,时,分别取,在同一直角坐标系中作出其图像: cma=1;y0=0.3;s0=0.65; clear f=dsolve(Dy=1/cma/s-1,y(s0)=y0,s); cma=1;y0=0.3;s0=0.65; f1=subs(f); ezplot(f1,0,1) hold on y0=0.4;s0=0.35; f2=subs(f); ezplot(f2,0,1) hold on y0=0.5;s0=0.45; f3=subs(f); ezplot(f3,0,1) hold onSIR模型的相轨线 y0=0.7;s0=0.25; f4=subs(f); ezplot(f4,0,1) hold on ezplot(1-s,0,1) grid on模型分析:(1)不论初始条件,如何,病人比例越来越少,最终消失。(2)最终未被感染的健康者的比例是,在中。令时,的单根即为:最终未被感染的健康者的比例。在图像上:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年四川绵阳安州区考核招聘教师9人备考考试题库附答案解析
- 2025上海宋庆龄幼儿园工作人员招聘1人备考考试题库附答案解析
- 2025下半年陕西咸阳市事业单位招聘209人备考考试题库附答案解析
- 2025广东深圳市退役军人事务局招聘1人备考考试题库附答案解析
- 2025云南玉溪市红塔区发展和改革局城镇公益性岗位招聘1人备考考试题库附答案解析
- 2025版痔疮病情详解及护理方法分享
- 中学组织教育活动实施纲要
- 财税咨询方案写作范文
- 建筑方案设计中标公司名单
- 山东八年级第一学期物理第一次月考9月份考试试题以及答案(适合沪科版)
- 2025至2030中国聚烯烃行业项目调研及市场前景预测评估报告
- 2025四川达州宣汉县国有资产管理服务中心县属国有企业招聘劳动合同职工26人笔试历年参考题库附带答案详解
- 2025年下半年杭州市上城区丁兰街道办事处招聘编外工作人员11人考试参考题库及答案解析
- 2025年合肥市广播电视台(文广集团)招聘12人考试参考题库及答案解析
- 2025年大队委竞选面试题库及答案
- 2025年信用管理专业题库- 信用管理对企业市场风险的控制
- 6.2 用7~9的乘法口诀求商(课件)数学青岛版二年级上册(新教材)
- 普通饮片车间共线生产风险评估报告
- 新教科版小学1-6年级科学需做实验目录
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 读懂诗家语省公开课金奖全国赛课一等奖微课获奖课件
评论
0/150
提交评论