




免费预览已结束,剩余26页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,二次函数,复习课,内黄县五实验,二次函数一般考点:,1、二次函数的定义2、二次函数的图象及性质3、求二次函数的解析式4、a,b,c符号的确定5、抛物线的平移法则6、二次函数与一元二次方程的关系7、二次函数的综合运用,1、二次函数的定义,定义:y=axbxc(a、b、c是常数,a0)条件:a0最高次数为2代数式一定是整式,1、y=-x,y=100-5x,y=3x-2x+5,其中是二次函数的有_个。,其中二次项为ax,一次项为bx,常数项c,二次项的系数为a,一次项的系数为b,常数项c,2,函数当m取何值时,,(1)它是二次函数?,(1)若是二次函数,则且当时,是二次函数。,2、二次函数的图象及性质,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0,开口向上,a0当时,y=0当时,y0,x3,x=-2或x=3,-2y2你认为其中正确的个数有()A2B3C4D5,C,新课标教学网()-海量教学资源欢迎下载!,x,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(),B,学如逆水行舟,不进则退;心似平原奔马,易放难收,6、函数与的图象可能是()ABCD,二次函数的图象如图,那么abc、2a+b、a+b+c、a-b+c这四个代数式中,值为正数的有()A4个B3个C2个D1个,5、抛物线的平移法则,左加右减,上加下减,练习二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。二次函数y=2x2的图象先向平移个单位,再向平移个单位可得到函数y=2(x+1)2+2的图象。,下,3,右,3,左,1,上,2,基础练习,1.由y=2x2的图象向左平移两个单位,再向下平移三个单位,得到的图象的函数解析式为_,2.由函数y=-3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_,y=2(x+2)2-3,=2x2+8x+5,y=-3(x-1-4)2+2+3,=-3x2+30 x-70,3.抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2).则平移后的解析式为_;,y=2(x+1)2-8,4.将抛物线y=x2-6x+4如何移动才能得到y=x2.,逆向思考,由y=x2-6x+4=(x-3)2-5知:先向左平移3个单位,再向上平移5个单位.,2、二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点,=b24ac0,=b24ac=0,=b24ac0,若抛物线y=ax2+bx+c与x轴有交点,则,=b24ac,0,6、二次函数与一元二次方程的关系,1、二次函数的图像与x轴的交点的横坐标就是对应一元二次方程的解,(1)如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=,此时抛物线y=x2-2x+m与x轴有个交点.,(2)已知抛物线y=x28x+c的顶点在x轴上,则c=.,1,1,16,(3)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),练习,当涨价为20元时,即定价为70元时,利润最大,最大利润为9000元。答:定价为70元/个,利润最高为9000元.,解:,设售价涨价为x元时,赚得最大利润由题意得y=(50+x-40)(500-10 x),=-10 x2+400 x+5000,(0x50,且为整数),=-10(x-20)2+9000,某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?,7、二次函数的综合应用,问题5:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。,解:,(1)AB为x米、篱笆长为24米花圃另一边为(244x)米,(3)墙的可用长度为8米,(2)当x时,S最大值36(平方米),Sx(244x)4x224x(0x6),0244x84x6,当x4m时,S最大值32平方米,小试牛刀如图,在ABC中,AB=8cm,BC=6cm,B90,点P从点A开始沿AB边向点B以2厘米秒的速度移动,点Q从点B开始沿BC边向点C以1厘米秒的速度移动,如果P,Q分别从A,B同时出发,几秒后PBQ的面积最大?最大面积是多少?,P,Q,解:根据题意,设经过x秒后PBQ的面积y最大,则:,AP=2xcmPB=(8-2x)cm,QB=xcm,则y=1/2x(8-2x),=-x2+4x,=-(x2-4x+4-4),=-(x-2)2+4,所以,当P、Q同时运动2秒后PBQ的面积y最大最大面积是4cm2,(0x4),P,Q,如图,在ABC中,AB=8cm,BC=6cm,B90,点P从点A开始沿AB边向点B以2厘米秒的速度移动,点Q从点B开始沿BC边向点C以1厘米秒的速度移动,如果P,Q分别从A,B同时出发,几秒后PBQ的面积最大?最大面积是多少?,在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?,D,C,A,B,G,H,F,E,10,6,再显身手,解:设花园的面积为y则y=60-x2-(10-x)(6-x),=-2x2+16x,(0x6),=-2(x-4)2+32,所以当x=4时花园的最大面积为32,新课标教学网()-海量教学资源欢迎下载!,4.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大专毕业学生登记表的自我鉴定
- 在职员工个人辞职报告
- 关于灶具投放协议书合同
- 二手葫芦机买卖合同协议
- led外墙清洗安全协议书合同
- 10kv配电室代维协议合同
- 文库发布:三人行课件
- 农村大型场地出租合同范本
- 木制柜制作安装合同协议书
- 农村信用社招聘考试常考点试卷及一套答案详解
- 2025年医师定期考核法律法规试题及答案
- 学堂在线 大学计算机基础 章节测试答案
- 县域共配仓农村物流配送成本控制报告
- 二级实验室生物安全管理手册
- 2024-2025学年北京市西城区人教版五年级下册期末测试数学试卷(含答案)
- 小儿巨细胞病毒感染的诊治-2
- 酒店客房样板间装修验收记录表
- 铁总物资〔2015〕250号:中国铁路总公司物资采购异议处理办法
- GB/Z 42625-2023真空技术真空计用于分压力测量的四极质谱仪特性
- 人民医院心血管外科临床技术操作规范2023版
- 助理工程师考试试题以及答案
评论
0/150
提交评论