二次函数线段最值利用几何模型求线段和差最值_第1页
二次函数线段最值利用几何模型求线段和差最值_第2页
二次函数线段最值利用几何模型求线段和差最值_第3页
二次函数线段最值利用几何模型求线段和差最值_第4页
二次函数线段最值利用几何模型求线段和差最值_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数线段最值(二)课前小测如图,抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FGAD于点G,作FH平行于x轴交直线AD于点H,求FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.利用几何模型求线段和差最值例1如图,抛物线与x轴交与A(1,0),B(- 3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.例2、 已知抛物线与x轴交A、C两点,与y轴交于B点,点P、Q为抛物线对称轴上的动点。(1) 求点A、B、C的坐标;(2) 当|CP-BP|取得最大值时,求此时点P的坐标及最大值;(3) 若PQ=1,当CP+PQ+QB取得最小值时,求此时点P、Q的坐标及最小值。巩固练习1、如图,一元二次方程的二根,是抛物线与x轴的两个交点B、C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求点M的坐标.2、如图,抛物线过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点PD/y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.3、如图1,抛物线的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)。(1)求抛物线的解析式。(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由。(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN/BD,交线段AD于点N,连接MD,使DNMBMD?若存在,求出点T的坐标;若不存在,请说明理由。课后作业1、 如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(1,0),C(0,3),抛物线的对称轴为x=-1.(1)求抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使得MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由;(3)该抛物线在第二象限的图象上是否存在一点P,使四边形BOCP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.2、如图,已知二次函数过点A(1,0),C(0,-3)(1)求此二次函数的解析式。(2)在抛物线上存在一点P使A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论