


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数图象的几何变换中考要求内容基本要求略高要求较高要求二次函数1.能根据实际情境了解二次函数的意义;2.会利用描点法画出二次函数的图像;1.能通过对实际问题中的情境分析确定二次函数的表达式;2.能从函数图像上认识函数的性质;3.会确定图像的顶点、对称轴和开口方向;4.会利用二次函数的图像求出二次方程的近似解;1.能用二次函数解决简单的实际问题; 2.能解决二次函数与其他知识结合的有关问题;一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成的形式,确定其顶点,然后做出二次函数的图像,将抛物线平移,使其顶点平移到.具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是 5. 关于点对称 关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数图象的平移变换练习1、函数的图象可由函数的图象平移得到,那么平移的步骤是:( ) 右移两个单位,下移一个单位 右移两个单位,上移一个单位 左移两个单位,下移一个单位 左移两个单位,上移一个单位2、函数的图象可由函数的图象平移得到,那么平移的步骤是( ) 右移三个单位,下移四个单位 右移三个单位,上移四个单位 左移三个单位,下移四个单位 左移四个单位,上移四个单位3、二次函数的图象如何移动就得到的图象( ) 向左移动个单位,向上移动个单位. 向右移动个单位,向上移动个单位. 向左移动个单位,向下移动个单位. 向右移动个单位,向下移动个单位.4、将函数的图象向右平移个单位,得到函数的图象,则的值为( )A BCD 5、把抛物线的图象先向右平移个单位,再向下平移个单位,所得的图象的解析式是,则_6、对于每个非零自然数,抛物线与轴交于两点,以表示这两点间的距离,则的值是( )A BC D 7、把抛物线向左平移个单位,然后向上平移个单位,则平移后抛物线的解析式为ABCD8、将抛物线向下平移个单位,得到的抛物线是()A B CD9、将抛物线向上平移个单位,得到抛物线的解析式是( ) 10、一抛物线向右平移个单位,再向下平移个单位后得抛物线,则平移前抛物线的解析式为_11、如图,中,点的坐标是,以点为顶点的抛物线经过轴上的点, 求点,的坐标 若抛物线向上平移后恰好经过点,求平移后抛物线的解析式12、 已知二次函数,求:关于轴对称的二次函数解析式;关于轴对称的二次函数解析式;关于原点对称的二次函数解析式13、函数与的图象关于_对称,也可以认为是函数的图象绕_旋转得到1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年血液透析行业投资趋势与盈利模式研究报告
- 2025年大件运输行业需求分析及创新策略研究报告
- (2025年标准)合作入股开店协议书
- 2025年礼品包装纸行业需求分析及创新策略研究报告
- 2025年动力锂电池行业投资趋势与盈利模式研究报告
- 2025年电气化铁路牵引供电系统变压器行业需求分析及创新策略研究报告
- 2025年激光焊接行业规模分析及投资前景研究报告
- 2025年港口码头行业需求分析及创新策略研究报告
- 2025年高阻隔膜行业规模分析及投资前景研究报告
- 2025年渗滤液处理行业投资趋势与盈利模式研究报告
- 一例ICD置入患者的护理查房
- 2025至2030年中国露点传感器行业市场研究分析及投资前景规划报告
- 护理术中配合操作规范
- 孩子改姓改名协议书
- 膜结构车棚安装合同协议
- 建筑垃圾清运服务方案投标文件(技术方案)
- 2025河南航空港发展投资集团有限公司社会招聘11人笔试参考题库附带答案详解
- 《肺炎链球菌感染》课件
- 《新能源发电技术》课件-新能源发电技术介绍
- 《分数乘法》(2课时)(教学设计)-2024-2025学年六年级上册数学苏教版
- 教育机构责任纠纷实证分析及预防
评论
0/150
提交评论