gps高程转换方法分析_第1页
gps高程转换方法分析_第2页
gps高程转换方法分析_第3页
gps高程转换方法分析_第4页
gps高程转换方法分析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最新【精品】范文 参考文献 专业论文GPS高程转换方法分析GPS高程转换方法分析 摘要:文章概述了GPS高程测量原理及GPS高程转换的常用方法,具有一定的科学性和实用性。 关键词:GPS;高程转换;方法 Abstract: this paper summarizes the GPS height measurement principle and GPS height conversion of the commonly used method, has the certain scientific and practical. Keywords: GPS; Height conversion; methods. 中图分类号:P228.4 文献标识码:A 文章编号:2095-2104(2013) 近年来,GPS卫星定位技术已在测绘、交通、城建、国土管理、水电、地质、水运、采矿等部门得到广泛的应用,并取得了可喜成果。目前GPS定位技术已经能够在10-610-9的精度量级上简捷而经济地获得所测点位的平面精度,但未能以相应的精度得到点的高程。主要原因是,GPS能给出高精度的大地高,由于没有一个具有相应精度的高分辨率的似大地水准面模型,致使GPS大地高到GPS海拔高或正常高的转换中精度严重丢失。 一、GPS高程测量原理 GPS测量可以得到相对于WGS-84坐标系的大地高(H),而我国采用的高程是相对于似大地水准面的正常高或正高(h),两者的差值为高程异常()。在工程应用中,三者关系为: =Hh(1) 由于各GPS点上的高程异常值无法直接测得,目前还无法直接将大地高精确地转换为正常高,传统的几何水准测量方法是测绘领域中测定正常高的主要方法,这种方法虽然精度高,但实施起来费时费力,效率低。如何利用GPS的精度高、速度快、操作简单等优点来解决高程问题成为测绘科学领域的一个热点,而如何求得精确的高程异常则是测绘技术的关键。目前大都采用高程拟合的方法来解决这类问题。 二、GPS高程系统简介 地面点沿椭球法线到参考椭球面的距离叫做大地高,用H表示。地面点到似大地水准面的距离叫做正常高,用Hr表示。似大地水准面和大地水准面十分接近。地面点的正常高不随水准测量路线的变化而变化,是唯一确定的值,同时也是我们实用的高程。似大地水准面与椭球面之间的距离称为高程异常,用表示,则:H - Hr = 严格地讲,这个表达式是近似的,它还应考虑参考椭球面法线与铅垂线的差异(垂线偏差)的影响,但由此引起的高程异常一般不超过0.1mm,完全可以忽略。可用天文水准或天文重力水准较严格求出。几种简单的求解方法: 1.GPS高程转换GPS高程转换的关键是求高程异常值,求得之后才能根据(1)式将GPS大地高转换成我国目前实用的正常高,才能在实际工作中加以应用。 2.拟合方法转换1)数值拟合的数学模型很多,考虑到模型的通用性,实用性以及计算实现的方便性,本拟合转换软件详细叙述了四种常用的模型:对加权平均值拟合和多项式曲面拟合详细介绍,另外提到插值拟合和多面函数拟合方法。同时,还考虑了利用非格网化数据进行地形改正的几何方法。 当测区形状为带状时,可以采用前二种方法进行计算,当测区太长时(超过100km),用多项式曲线采用整体逼近的方式拟合,可能效果不太好,因此,可以采用三次样条或加权平均值法拟合计算。当测区形状为面状时,可以采用后三种方法计算。当测区为平原或高程异常值变化较缓的地区,并且测区面积比较小,水准重合点较少时,可以采用均值挂靠法拟合。在有条件使用多项式曲面拟合和加权平均值拟合时,建议不使用均值挂靠法计算。在山区,地面起伏大,就必须考虑地形改正。2)GPS高程转换精度分析GPS高程转换的精度除上述分析外,还跟GPS本身测高精度有关。由于卫星分布不对称、对流层延迟改正残差、星历误差、基线起算点误差、坐标误差等等误差引起精度流失。在拟合法中高程异常的精度还跟水准测量的误差、重合点的数目及分布均匀有关。 三、常用的GPS高程转换方法 1.解析多项式法多项式拟合是在拟合区域内的水准重合点之间,按削高补低的原则平滑出一个曲面来代表拟合区域的似大地水准面,供内插使用。采用此种方法拟合似大地水准面,拟合范围越大,高程异常的变化越复杂,削高补低的误差也越大。同时,随着多项式阶次的增高,拟合出的曲面的震荡增大。 2.多面函数法多面函数法是一种纯数学的曲面逼近方法,它的出发点是在每个数据点上同各个已知点分别建立函数关系(这种函数称为核函数,其表现形式为一规则的数学曲面),将这些规则的数学曲面按一定的比例叠加起来,就可拟合出任何不规则的曲面,且能达到较好的拟合效果。待定点是核函数和求解出的迭加系数的线性函数。很明显,多面函数的解算具有最小二乘配置和推值法的性质。最小二乘配置法中的协方差函数是一种统计函数,在高程异常资料稀少的地区很难确定,而多面函数的核函数可以按几何关系确定,它是距离的函数,且顾及了待定点和已知点间的相关关系,起权系数矩阵的作用。 3.加权均值法加权均值法的实质都是根据水准重合点上的高程异常值的加权均值估计插值点的高程异常。采用此类方法,若以内插点到已知点的平面距离的函数为权,则只顾及了已知点距内插点的远近的影响,不能反映出水准重合点的分布及周围地形的起伏,内插出的高程异常值向最近的已知值靠近;若以向径的函数作权,对插值精度有一定程度的改善。 4.非参数回归法和高程异常变化梯度法非参数回归法是一种广义的回归方法。它具有思路直观,模型宽松,计算简单的优点,它的理论基础是概率密度估计的核估计和最邻近估计。该方法的关键在于权函数的适当选取,本文采用近邻权方法求取未知点上的高程异常。近邻权是一种具有优良大样本性质的权。一些实践和理论表明,即使只从全部已知点中选用距未知点最近的一个已知点所对应的高程异常值作为该未知点的预测值(这种预测称为最邻近预测),其风险也只是最小风险的两倍。高程异常变化梯度法是首先估计出测区范围内高程异常变化的总体趋势,然后选取距待求点最近的已知点上的高程异常值作为待定点高程异常的平滑项,再考虑待定点上的高程异常的波动值,获得未知点上的高程异常。 5.固定边界3次样条插值法样条函数是一种连续和平滑的组合函数,该函数能在全部结点上计算和微分,这些点通过定义一个闭合区间来确定。此区间还可进一步划分为若干个子区间,对于每个子区间都可通过一组系数表示出该子区间内的函数。这些函数在子区间端点处相连,形成一个连续而平滑的合成函数,两个函数相连的点称为节点,为了实现两个函数在公节点处相连,它们必须同时满足某些公共条件。当规定边界条件后,则称为固定边界样条函数。这些函数通常采用低阶多项式的形式,本文采用的样条函数是利用3次多项式构成的,这样的样条插值函数称为3次样条函数。 6.线性移动拟合法线性移动拟合法是以每个拟合点为中心,选取周围的点参与拟合并顾及这些点的分布及地形起伏的影响,移动拟合法采用的拟合区域相对较小,可使已知点更好地发挥控制作用。在拟合过程中,若以向径作权,能够使拟合出的函数反映出周围地形起伏的影响,从而加强了对高程异常变化趋势的拟合。采用此方法拟合高程异常,在每个待定点上都单独求定一个拟合函数,直接得到待定点上的拟合值,计算灵活,拟合区域越小,精度越高。 四、拟合法进行GPS高程转换的几个问题 1.采用拟合法确定地面点的正常高是建立在这样两个前提的基础上的:平差后的GPS观测值具有很高的精度,可以看作精确值;已知高程控制点上的正常高亦可看作精确值。 2.我们用下式来描述大地高、正常高和正高之间的关系。 HG=Hr+HN+N 式中:HG为大地高;Hr,HN分别为正常高和正高;,N分别为高程异常和大地水准面差距。上述关系是一个近似式。严格地讲,应顾及地球椭球面法线与铅垂线方向的差异(即垂线偏差)的影响。但该差异一般不大于1,由它所引入的高程误差不大于0.1mm,完全可以忽略不计。 3.GPS网中水准点的选择和分布。在GPS网中的点除能利用旧点已有的水准高程外,应根据需要适当进行高程联测,在GPS测量规范中有这方面的具体要求。水准重合点的分布对于拟合效果有着至关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论