




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定解条件和定解问题含有未知函数的偏导数的方程叫偏微分方程,常微分方程可以看成是特殊的偏微分方程。方程的分数是1的称为方程式,个数多于1的叫做方程组。方程(组)中出现的未知函数的最高阶偏导数的阶数称为方程(组)的阶数。如果方程(组)中的项关于未知函数及其各阶偏导数的整体来讲是线性的,就称方程(组)为线性的,否则就称为非线性的。非线性又分为半线性、拟线性和完全非线性。一、 定解条件给定一个常微分方程,有通解和特解的概念。通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态。特解除了要求满足方程还要满足给定的外加(特殊)条件。对偏微分方程也是如此,换句话说,只有偏微分方程还不足以确定一个物理量随空间和时间的变化规律,因为在特定情况下这个物理量还与它的初始状态和它在边界受到的约束有关。描述初始时刻的物理状态和边界的约束情况,在数学上分别称为初始条件(或初值条件)和边界条件(或边值条件),他们统称为定解条件。初始条件:能够用来说明某一具体物理现象初始状态的条件,即描述物理过程初始状态的数学条件。边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件,即描述物理过程边界状态的数学条件。定解条件:初始条件和边界条件的统称。非稳态问题:定解条件包括初始条件和边界条件。稳态问题:定解条件为边界条件。1、弦振动方程 ( )初始条件是指初始时刻()弦的位移和速度。若以, 分别表示弦上任意点的初始位移和初始速度,则初始条件为: 边界条件是指弦在两端点的约束情况,一般有三种类型。(1)第一类边界条件(狄利克雷(Dirichlet)边界条件):已知端点处弦的位移是,则边界条件为: 或 当时,表示在该点处弦是固定的。(2)第二类边界条件(诺伊曼(Neumann)边界条件):已知端点弦所受的垂直于弦线的外力或,则边界条件为: 或 当,表示弦在端点处自由滑动。(3)第三类边界条件(混合边界条件或罗宾(Robin)边界条件:已知端点处弦的位移和所受的垂直于弦线的外力的和:或,其中表示两端支承的弹性系数,当时,表示弦在该端点处被固定在一个弹性支承上。2、热传导方程(初始条件是指初始时刻物体内的温度分布情况。式中( x, y, z )为已知函数,表示温度在初始时刻的分布。边界条件是指边界上温度受周围介质的影响情况,可分为三种。(1) 第一类边界条件:介质表面温度已知 式中,p为边界面上的点。 (2)第二类边界条件:通过介质表面单位面积的热流量己知。 (3)第三类边界条件:边界面与周围空间的热量交换规律已知 由热量守恒定律可知,这个热量等于单位时间内流过单位面积上的热量。3、位势方程(泊松方程或拉普拉斯方程)对于稳态问题,变量不随时间发生变化。定解条件不含初始条件,只有边界条件。 第一边值问题,狄利克莱问题(狄氏问题) 第二边值问题,牛曼问题 第三边值问题(混合问题)鲁宾问题 二、 定解问题一个方程匹配上定解条件就构成定解问题。对于定解问题,通常由于定解条件的差异有下面的三种提法: 偏微分方程(泛定方程)+初始条件+边界条件,称为初边值问题或混合问题;偏微分方程(泛定方程)+初始条件,称为初值问题或柯西问题;偏微分方程(泛定方程)边界条件,称为边值问题。在一个偏微分方程的定解问题中,把不含未知函数及其偏导数的项,称为自由项。如果方程中的自由项为零,则称方程为齐次方程,否则就称为非齐次方程。如果边界条件中的自由项为零,则称边界条件为齐次边界条件,否则就称为非齐次边界条件。例如,对于弦振动方程,当外力等于零时,方程就变为齐次方程,此时也称它为弦的自由振动方程;当弦的两端固定时,边界条件就是齐次边界条件。三、 例题 1、长为l的弦,两端固定于0和l。在中点位置将弦沿着横向拉开距离h ,如图所示,然后放手任其振动,试写出初始条件。 l x l/2h解:初始时刻就是放手的那一瞬间,按题意初始速度为零,即有 初始位移 2、长为l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东茂名高州市公安局警务辅助人员招聘30人考试参考题库及答案解析
- 2025昆明市盘龙区面向全国引进高中教育管理人才考前自测高频考点模拟试题及1套完整答案详解
- 2025河北省中医院第二次选聘1人考试参考题库及答案解析
- 2025河南新乡事业单位招录203人考前自测高频考点模拟试题有答案详解
- 2025福建三明林校招聘407人模拟试卷及1套完整答案详解
- 物业管理科技创新创业项目商业计划书
- 2025下半年四川成都市金牛区卫生健康局所属事业单位考试招聘7人考试参考题库及答案解析
- 2025湖南株洲市行政审批服务局公开招聘中级雇员2人模拟试卷及答案详解(有一套)
- 2025贵州务川自治县司法局、县审计局和砚山镇人民政府招聘城镇公益性岗位人员6人模拟试卷及答案详解(全优)
- 北京中学商务区实验中学、北京中学商务区实验小学招聘教师考试模拟试题及答案解析
- 中国移动长春市2025秋招笔试性格测评专练及答案
- 2.1.4大气的水平运动课件高中地理鲁教版必修一
- 2025年雅思写作真题解析试卷及答案
- 动火作业现场安全防护设施布置与维护更新方案
- 2025国家统一法律职业资格考试考试真题及答案
- 2025年高考化学试卷(湖南卷)(解析卷)
- 河湖划界评审汇报
- 小学英语词汇语法知识点归纳总结
- 核心素养导向课堂教学反思
- 车辆应急安全培训课件
- 家具制造业2025年原材料价格波动对行业市场发展趋势影响报告
评论
0/150
提交评论