![工程测试技术基础 张春华 课后答案[1-5章].khda_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-5/17/78a69bd7-69fe-47bc-b09b-6207661174cd/78a69bd7-69fe-47bc-b09b-6207661174cd1.gif)
![工程测试技术基础 张春华 课后答案[1-5章].khda_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-5/17/78a69bd7-69fe-47bc-b09b-6207661174cd/78a69bd7-69fe-47bc-b09b-6207661174cd2.gif)
![工程测试技术基础 张春华 课后答案[1-5章].khda_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-5/17/78a69bd7-69fe-47bc-b09b-6207661174cd/78a69bd7-69fe-47bc-b09b-6207661174cd3.gif)
![工程测试技术基础 张春华 课后答案[1-5章].khda_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-5/17/78a69bd7-69fe-47bc-b09b-6207661174cd/78a69bd7-69fe-47bc-b09b-6207661174cd4.gif)
![工程测试技术基础 张春华 课后答案[1-5章].khda_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-5/17/78a69bd7-69fe-47bc-b09b-6207661174cd/78a69bd7-69fe-47bc-b09b-6207661174cd5.gif)
已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
- 66 7.8 10 /1.01825447.6601682/10 6 0.00003/25.048941.197655/10 0.026/5.4824.743 6 6 7.8 10 /1.01825447.6601682/107.8 10 /1.01825447.6601682/10 6 6 0.00003/25.048941.197655/100.00003/25.048941.197655/10 x s Xxx n 8 1 802.44 8 i i x x 8 2 1 () 0.040356 8 1 i i xx s 0.014268 8 x s 10 1 i i LL 2 10 2 1 0.6mm i LL i i L L dhV 2 4 d h V 2 222 2 2222 22 22 24 2 Vdhdh dh VVdhd dh VV dh 22 22 44(0.5%)(0.5%)1.1% Vdh Vdh 0.6mm0.6mm d d 1- 4 0 t x(t) T0 2 T0 2 0 T A - A T0 0 0 (0) 2 ( ) (0) 2 T At x t T At 00 000 0 0 0 22 0 2000 2 111 ( )d =d +d =(cos- 1) ( =0, 1, 2, 3, ) TT jntjntjnt T Tn cx t etAetAet TTT A jnn n 00 1 ( )(1 cos) jntjnt n nn A x tc ejne n =0, 1, 2, 3, n (1 cos) ( =0, 1, 2, 3, ) 0 nI nR A cn nn c 22 2 1, 3, , (1 cos) 00, 2, 4, 6, nnRnI A n A cccn n n n 1, 3, 5, 2 arctan1, 3, 5, 2 00, 2, 4, 6, nI n nR n c n c n 000000 =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) TTTTTT 000000 111111 TTTT 111111 =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) d +d +cx t etAetAetcx t etAetAet 000000 d +d +d + 222222000000000000000000 TTTTTT 111111111111 0000002222000000222200000000022 111111 22222222 111111111 22222222222222222222222222222222222222222222 0 d =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) =(cos- 1) ( =0, 1, 2, 3, ) jntjnt cx t etAetAetcx t etAetAet 000000d d jnt 000000000 jntjnt cx t etAetAetcx t etAetAet 000000 jntjnt 000000000 cx t etAetAet 0 ( )(1 cos)( )(1 cos)( )(1 cos)( )(1 cos) 000000 n ( )(1 cos)( )(1 cos)( )(1 cos) 00000000 (1 cos)(1 cos) ( =0, 1, 2, 3, ) ( =0, 1, 2, 3, ) (1 cos)(1 cos) |cn| n /2 -/2 0 03050 3 050 2A/ 2A/3 2A/5 2A/5 2A/3 2A/ -0- 30- 50 -0- 3 0- 50 0 ( )sinx txt xrms x 0000 2 2 0 0 000 224211 ( )dsindsindcos T T TT x xxxx x ttxt tt tt TTTTT 2 222 00 rms0 000 111 cos2 ( )dsindd 22 TTT xxt xx ttxt tt TTT ( )(0,0) at x tAeat (2) 22 0 22 0 (2) ( )( ) (2)2(2) ajf t jf tatjf t eAA ajf X fx t edtAeedtA ajfajfaf 22 ( ) (2) k X f af Im( )2 ( )arctanarctan Re( ) X ff f X fa f |X(f)| A/a 0 (f) f 0 /2 -/2 TTTTTT 000000 ( )(0,0)( )(0,0)( )(0,0)( )(0,0)( )(0,0)( )(0,0)( )(0,0) jf tatjf tjf tatjf t222222 X fx t edtAeedtAX fx t edtAeedtA jf tatjf tjf tatjf tjf tatjf t222222 X fx t edtAeedtAX fx t edtAeedtA jf tatjf tjf tatjf tjf tatjf tjf tatjf tjf tatjf t2222222222222222 ( )arctanarctan Re( ) ( )arctanarctan 0000 d 00 2 x x 00000000 t 00 t ttt t t d t ttt tt 000000 d d 000000 t ttt t t d d (2)(2) (2)2(2) (2) eAAeAA (2)(2) X fx t edtAeedtAX fx t edtAeedtA (2)(2)(2) eAAeAA (2)(2)(2) eAA X fx t edtAeedtAX fx t edtAeedtAX fx t edtAeedtAX fx t edtAeedtA (2)2(2) 22 (2) 22 (2) Im( )2Im( )2 ( )arctanarctan( )arctanarctan Im( )2Im( )2Im( )2Im( )2Im( )2Im( )2Im( )2Im( )2Im( )2Im( )2 ( )arctanarctan( )arctanarctan t sgn(t) 0 1 - 1 t u(t) 0 1 1- 251- 4 a)b) 10 ( )sgn( ) 10 t x tt t 1 0 ( )sgn( ) 0 at at at et x tet et 1 0 ( )sgn( )lim( ) a x ttx t 0 222 11 22 0 4 ( )( ) (2) jf tatjf tatjf t f Xfx t edte edteedtj af 1 0 1 ( )sgn( )lim( ) a X ftXfj f F 1 ( )X f f 0 2 ( ) 0 2 f f f 222222222222 Xfx t edte edteedtj 222222atjf tatjf tatjf tatjf t222222 Xfx t edte edteedtjXfx t edte edteedtj atjf tatjf tatjf tatjf tatjf tatjf t222222222222222222222222222222222222222222222222222222 Xfx t edte edteedtjXfx t edte edteedtj 222222atjf tatjf tatjf tatjf t222222222 0 0 atjf tatjf tatjf tatjf t222222 Xfx t edte edteedtjXfx t edte edteedtj 0 0 atjf tatjf tatjf tatjf tatjf tatjf t222222222 Xfx t edte edteedtjXfx t edte edteedtj atjf tatjf tatjf tatjf tatjf tatjf t 0 0 222222 Xfx t edte edteedtjXfx t edte edteedtjXfx t edte edteedtj 0 0 atjf tatjf tatjf tatjf t222222 Xfx t edte edteedtjXfx t edte edteedtjXfx t edte edteedtjXfx t edte edteedtj atjf tatjf tatjf tatjf tatjf tatjf t222222222222222222atjf tatjf tatjf tatjf t222222222222222222222222222222atjf tatjf tatjf tatjf tatjf tatjf t222222 1 1 X ftXfj( )sgn( )lim( ) f X ftXfj( )sgn( )lim( ) 1( ) sgn( ) at x tet t x1(t) 0 1 - 1 f (f) 0 /2 0f |X(f)| -/2 10 ( ) 00 t u t t 11 ( )sgn( ) 22 u tt 1111111 ( )( )sgn( )( )( ) 22222 U fu ttfjfj ff FFF 2 2 11 ( )( ) 2 U ff f f |U(f)| 0 (1/2) f (f) 0 /2 -/2 10 ( )( )d 00 tt u t t 11111111111111 2222222222 ( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( ) 11111111111111 ( )( )sgn( )( )( )( )( )sgn( )( )( ) 1111111 ( )( )sgn( )( )( ) 1111111 ( )( )sgn( )( )( ) 11111111111111 2222222222 ( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( ) 111111111111111111111 ( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( ) 111111111111111111111111111111111111111111 ( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( )( )( )sgn( )( )( ) 1111111111111111111111111111 ( )( )sgn( )( )( ) 1111 ( )( )d( )(0) ( )( ) 222 t U ffffj jff F 0 cost 0 cos ( ) 0 ttT x t tT 0 ( )( )cos(2)x tw tf t ( )2 sinc(2)W fTTf 00 22 0 1 cos(2) 2 jf tjf t f tee 00 22 11 ( )( )( ) 22 jf tjf t x tw t ew t e 00 00 11 ( )()() 22 sinc2()sinc2() X fW ffW ff TT ffTT ff f X(f) T f0- f0 0 ( )sin at x tet 1- 26 t tT- T T- T x(t) w(t) 1 0 0 1 - 1 00000000 sinc2()sinc2()sinc2()sinc2()sinc2()sinc2() 000000 sinc2()sinc2()sinc2()sinc2()sinc2()sinc2() 000000000000 sinc2()sinc2()sinc2()sinc2()sinc2()sinc2() 00000000 sinc2()sinc2() 000000 X(X f f ( ( ( ) ) f f f T - - T T x(t) 00 0 1 sin() 2 jtjt tee j 00 1 ( ) 2 jtjtat x teee j 1( ) (0,0) at x teat 11 22 0 1 ( )( ) j tatj t aj Xfx t edteedt aja 00 1010 2222 00 222 000 22222222 0000 ()()11 ( )()() 22()() ()2 () () () () ajaj XXX jj aa aa j aaaa 0 0 X( ) - ( ) 00 cos() m t 0 cost 0 ( )cosf tt 0m 1 1 ajaajaajaajaajaajaajaajaaja 222 1111 222 22()()22()() 2222 22222222 22222222 00000000 ()()()()11 22()()22()() 22222222 ()2()2 222222222222 00000000 ajajajaj()()()() 22()()22()()22()() 22222222 22()()22()()22()() j ()2 ajajajajajaj()()()() 22222222 ajajajaj()() 22()()22()() 2222 jj aajj aajj aa22()()22()()22()()22()()22()()22()()22()() 222222222222 ()()()() ()2()2()2()2()2()2 00000000 () () () () () () () () () () () () 222222222222 () () () () () () () () () () () () () () () () 0000000000000000 1- 271- 7 F( ) 0 f(t) 0t -m m 0 ( )( )cos()x tf tt ( ) ( )Ff tF 00 0 1 cos() 2 jtjt tee 00 11 ( )( )( ) 22 jtjt x tf t ef t e 00 11 ( )()() 22 X fFF f X(f) 0 -0 0m 0 ( )sin()x txt x 2 x 0 0 00 0 11 lim( )dsin()d0 TT x T x ttxtt TT 0 2 T 0000 ( )()()( )()() 00000000 ( )()() 0000 ( )()()( )()()( )()()( )()()( )()()( )()() 0000000000 ( )()()( )()()( )()()( )()() 00000000 ( )()()( )()()( )()() 0000 X X( (X X X f f ( ( ) ) f f f 00 22 2222 00 0 000 00 111 cos2() lim( )dsin ()dd 22 TTT x T xxt x ttxttt TTT 012 2 x Tttt 0 00 2 ( )lim xx T TTt P xx txx TTT 2200 00 0 ( )22 d1 ( )limlim d xx P xx txxtt p x xTxTx xx x(t) x x+ x tt t 1 ( ) 1 H s s 1 ( ) 1 H j 2 2 11 ( )( ) 2 1 () 1 () AH T 1 100%A 58.6%1s 32.7%2s 8.5%5s T T T 1 ( ) 10.005 H j 2 1 ( ) 1 (0.005 ) A( )arctan(0.005 ) 0101 2 1 (10)0.50.499 1 (0.005 10) yAx 1 (10)arctan(0.005 10)2.86 0202 2 1 (100)0.20.179 1 (0.005 100) yAx 2 (100)arctan(0.005 100)26.57 ( )0.499cos(102.86 )0.179cos(10071.57 )y ttt 1 ( )( ) 1 (0.005 ) ( )( )( ) 1 ( ) 151 H s s 1 ( ) 1 H j 2 1 ( ) 1 () A 2 1 ( ) 1 100%1100% 1 (2) A f 262 11 1100%1100%1.3% 1 (2)1 (2523 1050)f 6 ( )arctan(2)arctan(2523 1050)9.33f 22 ( ) s X s s 22 1 ( )( )( ) 1 s Y sH s X s ss 2 111111 ( ) 1 1 ()2(1)2(1) Y s jsjjsj s ( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100% 1111 1 (2523 1050)1 (2523 1050) ( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100%( ) 1 100%1100% 2 ( ) 1 100%1100% 2 1 (2)1 (2)1 (2) ( ) 1 100%1100%( ) 1 100%1100% 1 (2)1 (2)1 (2)1 (2)1 (2)1 (2)1 (2)1 (2)21 (2)1 (2)1 (2)1 (2)1 (2)1 (2) 262626 1111 262626 1 (2523 1050)1 (2523 1050) 2626262626 1 (2523 1050)1 (2523 1050)1 (2523 1050) 2626 ( )arctan(2)arctan(2523 1050)9.33( )arctan(2)arctan(2523 1050)9.33( )arctan(2)arctan(2523 1050)9.33( )arctan(2)arctan(2523 1050)9.33( )arctan(2)arctan(2523 1050)9.33 1 2 22 / 2 2/ 2 111 ( ) ( ) 1 ()2(1)2(1) 1() 1 ()21 () 1 cossin 1 () 1 1 () cos(arctan) 1 () t j tj t tj tj tj tj t t t y tY seee jj eejee e tte te L 1 1 1.53 ( ) 3.50.57171 K H s sss 22 2 2 2222 41 ( ) 1.41.4 nn nnnn K Hs ssss 2 22 ( ) 2 n nn H ss 2 22 1 ( ) 12 nn A 2 2 ( )arctan 1 n n 2 22 1 ( ) 12 nn A f ff ff 2 2 ( )arctan 1 n n f f f f f 2222 22222222222222222222 nnnn2 2 nnnnnnnn 2222222222 2 2nnnnnn2 2 K K 222222 2nnnnnn2 nnnnnnnn 1.41.41.41.4ssssssssssss1.41.41.41.41.41.4 2222222222222222222222222222 1.41.41.41.4 222222222222 ssssssssssss1.41.41.41.41.41.4 nnnn 2 222222 n n nnnn ssssssssss 22222222 nn ss nnnnnn 2222 ssss 2222 2 22 ssss2 2 2222 ssssss 2222 ssssss 22 0 11 0.215 11 ln(1.5/3)ln(/)M Kx 2 2 1 1.024rad/s 1 1 0.215 d n 2 222 33.15 ( ) 20.441.05 n nn H s ssss 2 222 33.15 ( ) 21.050.44 n nn H jj 2 22 3 ( ) 10.44 nn A 2 2 ( )arctan 1 n n 2 22 3 ()6.82 10.44 n nn A ()90 n 3.15 21.050.4421.050.44jjjj21.050.4421.050.4421.050.44 2 21.050.4421.050.44 2 2222222222 10.4410.4410.4410.44 nnnnnnnn n n 3 3- 843- 4 1.5V 2 00 2 2 NAdL S d 2 00 2 2 NAdZ S d 3- 843- 843- 43- 4 T 0000 2 00000 12326 3 2 153 () 8.85 101(4 10 ) ( 1 10 ) (0.3 10 ) 4.94 10F4.94 10 pF AAAA C 3- 853- 8 x xp RL ue uo Rx Rp xpl p x RRk xx x e e o (1)1(1) p ppp LpLpp x u x u u xRR xxx xRxR xx oe p x uux x P e e (1)1(1)(1)1(1) p ppp (1)1(1)(1)1(1) LpLppLpLpp u xRR ppp xxxx (1)1(1)(1)1(1)(1)1(1) RxR xxRxR xx (1)1(1)(1)1(1)(1)1(1) LpLppLpLppLpLpp (1)1(1)(1)1(1)(1)1(1)(1)1(1)(1)1(1)(1)1(1)(1)1(1) LpLpp oeoe x x uuxuux oeoe uuxuuxuux o1234e 1 () 4 URRRR U R 66 oee 11 2 2 1033 10 V3 V 44 g R UUSU R 66 oee 11 2 2 1036 10 V6 V 22 g R UUSU R 63 oee 11 2 2000 1033 10 V3mV 44 g R UUSU R 63 oee 11 2 2000 1036 10 V6mV 22 g R UUSU R o / U S R R o R US R o / / U Uo R R R RR R 2 2000 1036 10 V6mV 6363 2 2000 1036 10 V6mV 63 ( )(cos10cos100 )sin10000 1 sin(10 10000)sin(10 10000) 2 1 sin(100 10000)sin(100 10000) 2 sin10010sin9990sin10100sin9900 22 oegeg g g gg R uuSt uSAtBt Et R S EAtt S EBtt S EAS EB tttt f9900 An(f) 9990 1001010100 2 g S EB 2 g S EA 2 g S EB f0 An(f) 1500f8500 An(f) 9500 1000011500 20 30 100 100 10 15 10500 15 10 An(f ( ) ) f 2020 21 2 cc ff 012cc ff f 3 2 C R i(t) ui(t) uo(t) RC 1 ( ) 1 H s s 1 ( ) 1 H j 1 ( ) 0.0011 H s s 1 ( ) 10.001 H j 2 1 ( ) 1 (0.001 ) A( )arctan0.001 2 12 (1000) 1 (0.001 1000)2 A (1000)arctan0.001 1000 4 o 10(1000)sin1000(1000)5 2sin(1000) 4 uAtt 5 2 4 Ci i( (t t) ) RCRC uo o( (t t) ) j j j j 0.00110.00110.00110.0011 ( )( )H H( ) 1 ( ) 1 H j 2 1 ( ) 1 () A( )arctan 2 1 (10)0.894 1 (0.05 10) A(10)arctan(0.05 10)26.6 2 1 (100)0.196 1 (0.05 100) A(100)arctan(0.05 100)78.7 R1 C1 uo(t) 4- 464- 12 C2 R2 ui(t) 1 2 1 2123 ( ) ()1 s H s ss 1 2 1 2123 ( ) ()1 j H j 1 2 2 2 1 2123 ( ) 1() A 2 1 2 123 1 ( )arctan () R1 1 R R2 i i( (t t) ) 4- 464- 124- 12 u uo o( (t) C2 1 2123 ()1()1 1 21231 2123 ()1()1 1 21231 2123 ()1()1()1 1 2123 ()1 1 2123 1 1 ()1 j j j j ()1()1 - 50 - 40 - 30 - 20 - 10 0 10 1 100101102103104 - 90 - 45 0 45 90 Bode Diagram Frequency(rad/sec) 2 i 2 i1i1 dd d() d() InABnAB U rtr RRtr RR 2 i1i1 22 22 i1i1 ()()( ) ( ) ( )2 1 ()() n inn nABnABr Kr RRr RRIs H s InABrnABr U sss ssss rr RRI r RRI n r I i1 1 ()2 nAB RRIr i1 () nAB K r RR 4 1 3 i1 100 10150 7.5rad V ()10(12575) nAB K r RR 4 53 i1 11100 10150 23.717 ()(12575)2 2 2.5 1010 nAB RRIr 1 5 10 20rad s 2.5 10 n r I i i i1i1i1i1 d() d()d() d() i1i1i1i1i1i1 InABnABInABnAB U Ui i d() d()d() d()d() d() i1i1i1i1i1i1i1i1 d() d()d() d() i1i1i1i1i1i1i1i1 10 i1i1i1i1 ()()()() i1i1i1i1 ( )2( )22222 ()() nABnAB r RRr RR()()()()()() i1i1i1i1i1i1 InABrnABrInABrnABr ( )2( )22222 ssssssss ( )2( )2( )2 rr RRI r RRIrr RRI r RRI()() ()()()()()()()() i1i1i1i1i1i1 ( )2( )22222 ssssssssssss ( )2( )2 4 53 i1 11100 10150 0.7 ()(12575)2 2 2.5 1010 nAB RRRRIr 7500 2006576.3 0.72.5 R 4 1 3 i1 100 10150 0.221rad V ()10(125756576.3) nAB K r RRR (0,0) ( ) 0(0) at eta h t t () 0 1 ( )( ) () 2 ata ta h Rh t h tdteedte a 11 22 12 1212 1112 2122 1 ( )lim( )( ) ()() 2 11 lim( )()lim( )() 22 11 lim( )()lim( )() 22 ( )( )( )( ) T x TT TT TTTT TT TTTT xx xx xx Rx tx tx tx tdt T x t x tdtx t x tdt TT x t x tdtx t x tdt TT RRRR 1 2( ) 0 x x R 2 1( ) 0 x x R 1 1 1 11 1 111111 0 1 2 1 11111111 0 12 1 1111 00 1 22 11 11 1 0 1 ( )cos()cos() 1 cos()cos() 2 cos 22cos() 2 0cos()cos() 22 T x T TT T RAtAtdt T A ttttdt T A tdtdt T AA t T 1 2 2 2 ( )cos() 2 x A R 12 22 12 12 ( )( )( )cos()cos() 22 xxx AA RRR 1212 ( )( )( )( )( )( )( )( ) 121212 TT222222 ( )( )( )( )( )( )( )( )( )( )( )( ) 22222222222222 2122212221222122 22 21222122 22222222222222 2122 ( )0( )0( )0( )0( )0( )0 111111 ( )cos()cos()( )cos()cos() 111111111111111111111111 ( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos() 111111111111111111 1 2222 1 0cos()cos()0cos()cos() 111111 11 2222 1111 0cos()cos()0cos()cos() 1111 T1 22 1 AAAAAA 222222 1 111111111111 0cos()cos()0cos()cos()0cos()cos() 11111111 11 0000 lim( )()lim( )()lim( )()lim( )()t x tdtx t x tdtt x tdtx t x tdtlim( )()lim( )()lim( )()lim( )()lim( )()lim( )()lim( )()lim( )()lim( )()lim( )() 111111111111 ( )cos()cos()( )cos()cos() 111111111111 ( )cos()cos()( )cos()cos()( )cos()cos() 111111111111111111 ( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos()( )cos()cos() 111111111111111111 ( )cos()cos()( )cos()cos()( )cos()cos() 111111111111 TTTTTTTT 11 0000 t y(t) t x(t) 1 - 1 1 T - 1 5- 245- 3 sin( t) 0 0 00 3 44 3 0 44 11 ( )( ) ()() ( ) 1 ( 1)sin()1 sin()( 1)sin() 2 sin() TT xy TT T TT Rx t y tdtx ty t dt TT tdttdttdt T 411 ( )coscos3cos5 35 y tttt 00 0 00 114 ( )( ) ()sin()cos() 41 sin()sin() 2 2 sin(2)sin() 22 0sin()sin() TT xy T TT Rx t y tdtttdt TT ttttdt T tdtdt T T T 0 3 44 3 0 44 1 ( )( ) () 1 ( 1)sin()1 sin()( 1)sin() 2 sin() T xy TT T TT Rx t y tdt T t dtt dttdt T Rx t y tdtx ty t dtRx t y tdtx ty t dt( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( )( )( ) ()() ( ) 3TTTT3 4 4 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 444444 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 444444 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 4444 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 444444 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 444444 ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() T T ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() TTTT 0000 T ( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin()( 1)sin()1 sin()( 1)sin() 411411 ( )coscos3cos5( )coscos3cos5 411411 ( )coscos3cos5( )coscos3cos5 411411 ( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5 3535 ( )coscos3cos5 35 ( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5( )coscos3cos5 114114114114 ( )( ) ()sin()cos()( )( ) ()sin()cos() 0000 ( )( ) ()sin()cos()( )( ) ()sin()cos() 0000 ( )( ) ()sin()cos() 114114 ( )( ) ()sin()cos() 114114114 ( )( ) ()sin()cos()( )( ) ()sin()cos() 114114114114 ( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos()( )( ) ()sin()cos() t y(t) t x(t) 1 - 1 1 T - 1 sin( t) 0 0 t y(t+ ) 1 - 1 0 4 T3 4 TT T3 4 T 4 T 4 10 2 4 ( )3 2 ()0, 1, 2, y y T T T RT T RnTn Ry( ) 0T T/2 3 3 4 4 T T ()0, 1, 2,()0, 1, 2,()0, 1, 2, T ()0, 1, 2,()0, 1, 2, T ()0, 1, 2,()0, 1, 2,()0, 1, 2,()0, 1, 2,()0, 1, 2, Rx( ) 0 T Rxy( ) 0 x(t)y(t) 5- 255- 4 00 11 lim( ) ()lim( ) () TT TT x t x tdtx t y tT dt TT 1 11 00 2 1111 0 2 1111 0000 2 11 ( )lim( ) ()lim( )() 1 lim( )()( )() 1 lim( )()( )() 00( ) TT xxx TT T xxx T TTTT xxx T xxx Rx t x tdtx tx tdt TT x tx tx t x tdt T dtx t dtx tdtx t x tdt T R 1 2 ( ) x R 1 lim( )0 x R 2 lim( ) xx R lim( ) x RC x C TT00 11111111 0000 ( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )() 0000 1111 ( )lim( ) ()lim( )()( )lim( ) ()lim( )() 111111111111 ( )lim( ) ()lim( )()( )lim( ) ()lim( )()( )lim( ) ()lim( )
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-浙江-浙江垃圾清扫与处理工一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南广播电视天线工二级(技师)历年参考题库含答案解析
- 2024版仿古建筑修复工程施工合同
- 2025年事业单位工勤技能-江西-江西广播电视天线工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西计算机文字录入处理员二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东热处理工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年中级卫生职称-主管技师-心电学技术(中级)代码:387历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-北京-北京图书资料员五级(初级工)历年参考题库含答案解析
- 烯烃分离基础知识培训课件
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路钢轨探伤工)初级历年参考题库含答案解析(5套)
- 粮食仓储(粮库)安全生产标准化管理体系全套资料汇编(2019-2020新标准实施模板)
- 喜茶运营管理手册和员工操作管理手册
- 比亚迪汉DM-i说明书
- 心肾综合征及其临床处理
- 普通高中课程方案
- 2022年山东高考生物试卷真题及答案详解(精校版)
- GB/T 38936-2020高温渗碳轴承钢
- 高考地理一轮复习课件 【知识精讲+高效课堂】 农业区位因素及其变化
- 教师专业发展与名师成长(学校师范专业公共课)
- 互通立交设计课件
- 生物竞赛辅导 动物行为学第七章 行为发育(38)课件
评论
0/150
提交评论