因式分解复习课件.ppt_第1页
因式分解复习课件.ppt_第2页
因式分解复习课件.ppt_第3页
因式分解复习课件.ppt_第4页
因式分解复习课件.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,因式分解复习,平方差公式a-b=(a+b)(a-b)完全平方公式a2ab+b=(ab),把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式。如果一个多项式的各项含有公因式,那么可以把公因式提取出来进行因式分解,这种因式分解的方法叫做提取公因式法。,平方差公式法和完全平方公式法统称公式法平方差公式:适用于平方差形式的多项式完全平方公式法:适用于完全平方式。,公式法,因式分解,基本概念,提公因式法,(l)结果一定是积的形式;(2)每个因式必须是整式;(3)各因式要分解到不能再分解为止,把一个多项式化成几个整式的积的形式叫做因式分解,,因式分解,分解因式几个特点,即:一个多项式几个整式的积,实质:和差化积,因式分解的一般步骤:,一提:先看多项式各项有无公因式,如有公因式则要优先提取公因式;,二套:两项考虑平方差公式;三项考虑完全平方或十字相乘;,四查:最后用整式乘法检验一遍,并看各因式能否再分解,如能分解,应分解到不能再分解为止。,一般步骤,四项:常考虑一三分组或者是二二分组,三分:,是互逆的关系一定是恒等变形,分解因式与多项式乘法关系,否,否,是,A层练习下列代数式的变形当中哪些是因式分解,哪些不是?(1)3a2+6a=3a(a+2)(2)(2y+1)(2y-1)=4y2-1(3)18a3bc=3a2b6ac,sure?,sure?,sure?,基本概念,填空1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=。2x2-8x+m=(),m=。,-7,-10,x-4,16,3.下列等式中,从左到右的变形是分解因式的是()A.(x+5)(x-5)=x2-25B.x2+3x+1=(x+1)(x+1)-1x2+3x+2=(x+1)(x+2)D.a(m+n)=am+an4.下列多项式是完全平方式的是()A.0.01x2+0.7x+49B.4a2+6ab+9b29a2b2-12abc+4c2D.X2-0.25x+0.25,C,C,1.公因式确定(1)系数:取各系数的最大公约数;(2)字母:取各项相同的字母;(3)相同字母的指数:取最低指数。2.变形规律:(1)x-y=-(y-x)(2)-x-y=-(x+y)(3)(x-y)2=(y-x)2(4)(x-y)3=-(y-x)33.一般步骤(1)确定应提取的公因式;(2)多项式除以公因式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。,提公因式法:,例1用提公因式法将下列各式因式分解.(1)-x3z+x4y;(2)3x(a-b)+2y(b-a),解:(1)-x3z+x4y=x3(-z+xy).,(2)3x(a-b)+2y(b-a),=3x(a-b)-2y(a-b),=(a-b)(3x-2y),x3,+(b-a),-(a-b),(a-b),把下列各式分解因式:(xy)3(xy)a2x2y2,(2)4p(1-q)3+2(q-1)2,AAAAAA层练习将下列各式分解因式:(45=20)-a-ab;m-n;x+2xy+y(4)3am-3an;(5)3x+6xy+3xy,基本方法,=-a(a+b),=(m+n)(m-n),=(x+y),=3a(m+n)(m-n),=3x(x+y),(2)完全平方公式:a22ab+b2=(ab)2其中,a22ab+b2叫做完全平方式.,例如:4x2-12xy+9y2=(2x)2-22x3y+(3y)2=(2x-3y)2.,2.公式法,(1)平方差公式:a2-b2=(a+b)(a-b).,例如:4x2-9=(2x)2-32=(2x+3)(2x-3).,否,是,否,是,B层练习检验下列因式分解是否正确?(54=20)(1)2ab2+8ab3=2ab2(1+4b)(2)2x2-9=(2x+3)(2x-3)(3)x2-2x-3=(x-3)(x+1)(4)36a2-12a-1=(6a-1)2,答案,答案,答案,答案,基本概念,例2把下列各式分解因式.(1)(a+b)2-4a2;(2)1-10 x+25x2;(3)(m+n)2-6(m+n)+9,做一做,(m+n-3)2.,(3a+b)(b-a),(1-5x)2,(2)(a+b+c)2-(a+b-c)2,(4)3ax2-3ay4;(5)m4-1,(1)3x+6xy+3xy,(6)y24xy4x2,(3)xy-4xy+4,AAAAAAB层练习将下列各式分解因式:(2a+b)(ab);(2)(x+y)-10(x+y)+25(3)4a3b(4a3b)(4)(x25)22(x25)1(5)(x2+y2)(x2+y2-4)+4,基本方法,第二步第一环节,十字相乘法,顺口溜:竖分常数交叉验,横写因式不能乱,“拆两头,凑中间”,例1,例4分解因式,练习:(1),分组后能直接运用公式,分组后能直接提取公因式,分组分解法,四项:常考虑一三分组或者是二二分组五项:常考虑二三分组,(6)若xy99求x2xy2y2xy之值,应用:1).计算:20052-20042=2).若a+b=3,ab=2则a2b+ab2=3).若x2-8x+m是完全平方式,则m=4).若9x2+axy+4y2是完全平方式,则a=()A.6B.12C.6D.12,D,(5).计算+=_,1).3m2-272).1-a4,3).9-12x+4x24).-x2+4x-45).y3+4xy2+4x2y,6).-8a3b2+12ab3c-6a2b27).(m2+n2)2-4m2n28).(2x+y)2-(x+2y)2,AAAA,C层练习AAAAAAAAAAAA(1)不论a、b为何数,代数式a2+b2-2a+4b+5的值总是()A.0B.负数C.正数D.非负数,D,(5)已知a、b、c是一个三角形的三边,判断代数式a2-b2-c22bc的正负性。,(6)若n是任意正整数.试说明3n+2-43n+1+103n能被7整除.,(7)甲、乙两同学分解因式x2+ax+b时,甲看错了b,分解结果是(x+2)(x+6),乙看错了a,分解结果是(x+1)(x+16)请你分析一下a、b的值分别为多少,,(8),AAAAAAA,C层练习AAAAAA填空(53=15)1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=。2x2-8x+m=(x-4)(),且m=。,-7,-10,x-4,16,基本概念,第一步第二环节,B层练习将下列各式分解因式:(53=15)18ac-8bcm4-81n4xy-4xy+4,基本方法,=2c(3a+2b)(3a-2b),=(m2+9n2)(m+3n)(m-3n),=(xy2),C层练习将下列各式分解因式:(63=18)(2a+b)(ab);(2)(x+y)-10(x+y)+25(3)4a3b(4a3b),基本方法,=(2a-3b),=(x+y-5),=3a(a+2b),第二步第一环节,简化计算,(1)562+5644(2)1012-992,变式若a=99,b=-1,则a2-2ab+b2=_;,超级变变变,AAAAAAAAA,解方程:,x-9x=0,超级变变变,变式,解下列方程:(3x-4)-(3x+4)=48,畅所欲言,通过复习这节课你有那些新的收获与感受?说出来与大家一起分享!,因式分解的一般步骤:,一提:先看多项式各项有无公因式,如有公因式则要先提取公因式;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论