




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量与三角形内心、外心、重心、垂心、旁心知识的交汇一、五心的概念介绍(1)重心中线的交点:重心将中线长度分成2:1;(2)垂心高线的交点:高线与对应边垂直;(3)内心角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。(5) 旁心三角形两条外角平分线和一条内角平分线的交点 二、 “重心”的向量风采【命题1】 已知是所在平面上的一点,若,则是的重心如图.M 图图 【命题2】 已知是平面上一定点,是平面上不共线的三个点,动点满足,则的轨迹一定通过的重心.【解析】 由题意,当时,由于表示边上的中线所在直线的向量,所以动点的轨迹一定通过的重心,如图.二、“垂心”的向量风采【命题3】 是所在平面上一点,若,则是的垂心【解析】 由,得,即,所以同理可证,是的垂心如图. 图图【命题4】 已知是平面上一定点,是平面上不共线的三个点,动点满足,则动点的轨迹一定通过的垂心【解析】 由题意,由于,即,所以表示垂直于的向量,即点在过点且垂直于的直线上,所以动点的轨迹一定通过的垂心,如图.三、“内心”的向量风采【命题5】 已知为所在平面上的一点,且, 若,则是的内心图图【解析】 ,则由题意得,与分别为和方向上的单位向量,与平分线共线,即平分同理可证:平分,平分从而是的内心,如图.【命题6】 已知是平面上一定点,是平面上不共线的三个点,动点满足,则动点的轨迹一定通过的内心【解析】 由题意得,当时,表示的平分线所在直线方向的向量,故动点的轨迹一定通过的内心,如图.四、“外心”的向量风采【命题7】 已知是所在平面上一点,若,则是的外心图图【解析】 若,则,则是的外心,如图。【命题7】 已知是平面上的一定点,是平面上不共线的三个点,动点满足,则动点的轨迹一定通过的外心。【解析】 由于过的中点,当时,表示垂直于的向量(注意:理由见二、4条解释。),所以在垂直平分线上,动点的轨迹一定通过的外心,如图。三、三角形性质总结1O是的重心;若O是的重心,则故;为的重心.2O是的垂心;若O是(非直角三角形)的垂心,则故3O是的外心(或)若O是的外心则故4O是内心的充要条件是引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成 ,O是内心的充要条件也可以是 。若O是的内心,则ACBCCP故;是的内心;向量所在直线过的内心(是的角平分线所在直线);三、经典例题训练题例10若O、H分别是ABC的外心和垂心.求证 .证明 若ABC的垂心为H,外心为O,如图.连BO并延长交外接圆于D,连结AD,CD.,.又垂心为H,AHCD,CHAD,四边形AHCD为平行四边形,故.著名的“欧拉定理”讲的是锐角三角形的“三心”外心、重心、垂心的位置关系:(1)三角形的外心、重心、垂心三点共线“欧拉线”;(2)三角形的重心在“欧拉线”上,且为外垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。“欧拉定理”的向量形式显得特别简单,可简化成如下的向量问题.例11 设O、G、H分别是锐角ABC的外心、重心、垂心. 求证 证明 按重心定理 G是ABC的重心按垂心定理 由此可得 .补充练习1已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足= (+2),则点P一定为三角形ABC的 ( B )A.AB边中线的中点 B.AB边中线的三等分点(非重心)C.重心 D.AB边的中点1. B取AB边的中点M,则,由= (+2)可得3,即点P为三角形中AB边上的中线的一个三等分点,且点P不过重心,故选B.2在同一个平面上有及一点满足关系式: ,则为的 (D) 外心 内心 C 重心 D 垂心2已知ABC的三个顶点A、B、C及平面内一点P满足:,则P为的 (C) 外心 内心 C 重心 D 垂心3已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P 满足:,则P的轨迹一定通过ABC的 (C) 外心 内心 C 重心 D 垂心4已知ABC,P为三角形所在平面上的动点,且动点P满足:,则P点为三角形的 (D ) 外心 内心 C 重心 D 垂心5已知ABC,P为三角形所在平面上的一点,且点P满足:,则P点为三角形的 (B) 外心 内心 C 重心 D 垂心6在三角形ABC中,动点P满足:,则P点轨迹一定通过ABC的: ( B ) 外心 内心 C 重心 D 垂心7.已知非零向量与满足(+)=0且= , 则ABC为( )A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形解析:非零向量与满足()=0,即角A的平分线垂直于BC, AB=AC,又= ,A=,所以ABC为等边三角形,选D8.的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 19.点O是三角形ABC所在平面内的一点,满足,则点O是的(B)(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点(C)三条中线的交点(D)三条高的交点10. 如图1,已知点G是的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则。 证 点G是的重心,知O,得O,有。又M,N,G三点共线(A不在直线MN上), 于是存在,使得, 有=,得,于是得。例讲三角形中与向量有关的问题教学目标:1、三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法 2、向量的加法、数量积等性质 3、利用向量处理三角形中与向量有关的问题 4、数形结合教学重点:灵活应用向量性质处理三角形中与有关向量的问题教学难点:针对性地运用向量性质来处理三角形中与向量有关的问题教学过程:1、课前练习1.1已知O是ABC内的一点,若,则O是ABC的 A、重心 B、垂心 C、外心 D、内心1.2在ABC中,有命题;若,则ABC为等腰三角形;若,则ABC为锐角三角形,上述命题中正确的是 A、 B、 C、 D、2、知识回顾 2.1 三角形的重心、内心、垂心、外心及简单的三角形形状判断方法 2.2 向量的有关性质2.3 上述两者间的关联 3、利用向量基本概念解与三角形有关的向量问题例1、已知ABC中,有和,试判断ABC的形状。练习1、已知ABC中,B是ABC中的最大角,若,试判断ABC的形状。4、运用向量等式实数互化解与三角形有关的向量问题例2、已知O是ABC所在平面内的一点,满足,则O是ABC的 A、重心 B、垂心 C、外心 D、内心5、运用向量等式图形化解与三角形有关的向量问题例3、已知P是ABC所在平面内的一动点,且点P满足,则动点P一定过ABC的 A、重心 B、垂心 C、外心 D、内心练习2、已知O为平面内一点,A、B、C平面上不共线的三点,动点P满足,则动点P 的轨迹一定通过ABC的 A、重心 B、垂心 C、外心 D、内心例4、已知O是ABC所在平面内的一点,动点P满足,则动点P一定过ABC的 A、重心 B、垂心 C、外心 D、内心练习3、已知O是ABC所在平面内的一点,动点P满足,则动点P一定过ABC的 A、重心 B、垂心 C、外心 D、内心例5、已知点G是的重心,过G作直线与AB、AC分别相交于M、N两点,且,求证:6、小结 处理与三角形有关的向量问题时,要允分注意数形结合的运用,关注向量等式中的实数互化,合理地将向量等式和图形进行转化是处理这类问题的关键。7、作业1、已知O是ABC内的一点,若,则O是ABC的 A、重心 B、垂心 C、外心 D、内心2、若ABC的外接圆的圆心为O,半径为1,且,则等于 A、 B、0 C、1 D、3、已知O是AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动仲裁签协议书劳动关系仲裁书(13篇)
- 2025年事业单位工勤技能-湖南-湖南公路养护工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北家禽饲养员二级(技师)历年参考题库典型考点含答案解析
- 2025-2030中国线上超市行业经营效益与未来运营模式分析报告
- 医疗与医药行业:医疗信息化在智慧医疗建设中的应用报告
- 2025年事业单位工勤技能-浙江-浙江工程测量员二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南热处理工五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河南-河南图书资料员四级(中级工)历年参考题库典型考点含答案解析
- 2024版出租果树合同范本
- 2024-2025年度上海市设备监理师之设备监理合同题库与答案
- 多媒体教室使用的课件
- 2025年军队专业技能岗位文职人员招聘考试(工程机械驾驶员)历年参考题库含答案详解(5卷)
- 2025年下半年广西现代物流集团社会招聘校园招聘笔试参考题库附带答案详解(10套)
- 2025年粉笔辅警考试题库
- 水声传感器技术研究与应用
- 2025年小学教研室教学计划
- 2025年上海市建筑工程施工合同模板
- 手术室护理业务学习
- 贩卖人口罪与强迫劳动罪
- 新员工入职职业道德培训
- 宽带宣传活动方案
评论
0/150
提交评论