免费预览已结束,剩余22页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级上册,切线的判定定理,2个,交点,割线,1个,切点,切线,dr,没有,回顾:,图中直线l满足什么条件时是O的切线?,探究:,l,方法1:直线与圆有唯一公共点,方法2:直线到圆心的距离等于半径,注意:实际证明过程中,通常不采用第一种方法;方法2从“量化”的角度说明圆的切线的判定方法。,(1)圆心O到直线l的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?(3)由此你发现了什么?,请在O上任意取一点A,连接OA,过点A作直线lOA。思考:,l,操作与观察:,(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径0A则:直线l与O相切,这样我们就得到了从“位置”的角度圆的切线的判定方法切线的判定定理,发现:,切线的判定定理:,经过半径的外端并且垂直这条半径的直线是圆的切线。,对定理的理解:,切线必须同时满足两条:经过半径外端;垂直于这条半径,O,r,l,A,OA是半径,lOA于Al是O的切线,定理的数学语言表达:,1、判断:(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线(),巩固:,两个条件缺一不可,切线的判定方法有三种:直线与圆有唯一公共点;直线到圆心的距离等于该圆的半径;切线的判定定理即经过半径的外端并且垂直这条半径的直线是圆的切线.,判定直线与圆相切有哪些方法?,归纳:,例1.ABC内接于O,AB是O的直径,CAD=ABC,判断直线AD与O的位置关系,并说明理由.,典型例题,变式ABC内接于O,AB是O的弦,CAD=ABC,判断直线AD与O的位置关系,并说明理由.,证明一条直线是圆的切线时:直线与圆有交点时,连接交点与圆心,证垂直.,例1如图,已知:直线AB经过O上的点C,并且OA=OB,CA=CB。求证:直线AB是O的切线。,O,B,A,C,分析:由于AB过O上的点C,所以连接OC,只要证明ABOC即可。,例题:,有交点,连半径,证垂直,例2如图,已知:O为BAC平分线上一点,ODAB于D,以O为圆心,OD为半径作O。求证:O与AC相切。,O,A,B,C,E,D,无交点,作垂直,证半径,归纳:,例1与例2的证法有何不同?,(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直.简记为:有交点,连半径,证垂直.(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:无交点,作垂直,证半径.,2、如图,ABC中,AB=AC,AOBC于O,OEAC于E,以O为圆心,OE为半径作O.求证:AB是O的切线.,F,巩固:,无交点,作垂直,证半径,3、如图,AB是O的直径,点D在AB的延长线上,BD=OB,点C在O上,CAB=30.求证:DC是O的切线.,有交点,连半径,证垂直,如图,如果直线l是O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?,探究:,O,A,l,l是O的切线,切点为AlOA,切线的性质定理:圆的切线垂直于过切点的半径。,归纳:,过半径外端;垂直于这条半径.,切线,圆的切线;过切点的半径.,切线垂直于半径,切线判定定理:,切线性质定理:,比较:,1、如图,O切PB于点B,PB=4,PA=2,则O的半径多少?,巩固:,注:已知切线、切点,则连接半径,应用切线的性质定理得到垂直关系,从而应用勾股定理计算。,2、如图,AB、AC分别切O于B、C,若A=600,点P是圆上异于B、C的一动点,则BPC的度数是()A、600B、1200C、600或1200D、1400或600,小结:,1、知识:切线的判定定理着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可2、方法:判定一条直线是圆的切线的三种方法:(1)根据切线定义判定即与圆有唯一公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线(3)根据切线的判定定理来判定其中(2)和(3)本质相同,只是表达形式不同解题时,灵活选用其中之一,切线的性质定理:圆的切线垂直于过切点的半径。,小结:,例3如图,AB为O的直径,D是的中点,DEAC交AC的延长线于E,O的切线BF交AD的延长线于点F.(1)求证:DE是O的切线;(2)若DE3,O的半径为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁夏海原县一中2026届生物高一第一学期期末预测试题含解析
- 河南濮阳建业国际学校2025-2026学年化学高一第一学期期中综合测试试题含解析
- 辽宁石油化工大学《幼儿钢琴弹唱》2024-2025学年第一学期期末试卷
- 互联网教育市场前景分析报告
- 复合土工膜膜层厚度试验记录
- 豫剧伴我成长作文
- 浅谈如何提高女生声腔演唱艺术
- 本科毕业论文评语模板3
- 【作文评语】本科毕业论文指导老师评语3
- RMI落基山研究所:2025年互联小电网:从飞行员到发电站报告(英文版)
- 《ROHS知识培训》课件
- 市政道路施工方案投标文件(技术方案)
- 2024 ESC慢性冠脉综合征指南解读(全)
- 瑞得RTS-820系列全站仪说明书(适用RTS-822.822A.822L.822R.822R .822R3)
- 第23课范进中举课件九年级语文上册
- 中班安全《预防流感》课件
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 学会在记事中运用环境描写剖析
- 幼儿园小班课件科学《亮眼睛》
- 中外儿童文学经典阅读与写作智慧树知到期末考试答案章节答案2024年湖南师范大学
- 《工业互联网技术导论》 课件 第九章 工业互联网安全
评论
0/150
提交评论