



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2函数的表示法(2)解析式教学目的:1.掌握求函数解析式的几种常见方法. 教学重点: 求函数解析式的方法.教学难点: 求复合函数的解析式.教学过程: 一、复习引入 1、常用的函数的表示方法有哪些?(解析法、列表法、图象法.)2、什么叫函数解析式?(把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析式.3、函数解析式有什么优点?(函数关系清楚,容易从自变量的值求出其对应的函数值).函数解析式只表示一种对应关系,与所取的字母无关,如与是同一个函数.本节将通过具体例子来说明求函数解析式的几种常用方法.二、讲解新课 求函数解析式的常用方法有:1、待定系数法例1、(1)已知二次函数满足,图象过原点,求; (2)已知二次函数,其图象的顶点是,且经过原点,解:(1)由题意设 , ,且图象过原点, (2)由题意设 , 又图象经过原点, 得,说明:(1)已知函数类型,求函数解析式,常用“待定系数法”; (2)基本步骤:设出函数的一般式(或顶点式或两根式等),代入已知条件,通过解方程(组)确定未知系数。2、代入法例2、根据已知条件,求函数表达式(1)已知,求(2)已知,求和.解:(1)(2),说明:已知求,常用“代入法”.基本方法:将函数f(x)中的x用g(x)来代替,化简得函数表达式3、配凑法与换元法:例3、(1)已知,求.(2)已知,求解:(1)法一配凑法: 法二换元法:令,则, (2)设,则=,于是即.说明:已知求的解析式,常用配凑法、换元法;换元时,如果中间量涉及到定义域的问题,必须要确定中间量的取值范围4、构造方程法例3、已知f(x)满足,求.解: -将中换成得 -2-得说明:已知与,或与之间的关系式,求的解析式,可通过“互换”关系构造方程的方法,消去或,解出.三、课堂练习:若f(1/x)=1/(1+x),则f(x)= ;已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,则f(x)= ;已知g(x)=1-2x,fg(x)=(1-x2)/x2(x0),则f(1/2)= ;(4)已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)= .解:令u=1/x,则x=1/u,f(u)=u/(1+u),f(x)=x/(1+x);设f(x)=ax2+bx+c(a0),f(0)=1,c=1,又f(x+1)-f(x)=2x,a(x+1)2+b(x+1)+1-ax2-ba-1=2x,即2ax+a+b=2x,比较系数得2a=2且a+b=0,a=1,b=-1,f(x)=x2-x+1.由g(x)=1-2x=1/2,得x=1/4,f(1/2)=1-(1/4)2/(1/4)2=15.f(36)=f(66)=f(6)+f(6)=2f(6)=2f(23)=2f(2)+f(3)=2(p+q).四、小 结1、函数解析式是函数与自变量之间的一种对应关系,与所取的字母无关.2、求函数解析式的方法一般有待定系数法、代入法、换元法和构造方程法等.3、实际操作中要学会灵活应用这些方法.五、布置作业填空:若f(x)=2x+1,则ff(2)=;f(-x)=;ff(x)=.若f(x+1)=x2-2x+5,则f(x)=.若f(x)=2x+3,g(x+2)=f(x),则g(x)=.若3f(x)+2f(1/x)=4x,则f(x)=.若f(x)=x2-mx+n,f(n)=m,f(1)=-1,则f(-5)= .2、已知函数f(x)=4x+3,g(x)=x2,求ff(x),fg(x),gf(x),gg(x).答案与提示:ff(2)=f(5)=11,f(-x)=-2x+1,ff(x)=2f(x)+1=4x+3;f(x)=x2-4x+8;g(x)=2x-1;f(x)=(12x2-8)/5x(x0);将f(n)=m与f(1)=-1并成方程组,解得m=1,n=-1,可知f(x)=x2-x-1f(-5)=29.2、 ff(x)=4f(x)+3=4(4x+3)+3=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河南-河南理疗技术员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南有线广播电视机务员五级(初级工)历年参考题库典型考点含答案解析
- 2024版机械加工承包合同范本
- 2025年事业单位工勤技能-河北-河北家禽饲养员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河北-河北兽医防治员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西园林绿化工二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西经济岗位工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西管工(技师/高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西检验员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西客房服务员三级(高级工)历年参考题库典型考点含答案解析
- 地下通道水泵房管理制度
- 溺水患者急救培训
- 2026版步步高大一轮高考数学复习讲义第十章 §10.1 计数原理与排列组合含答案
- 人力公司营销策划方案
- 医院医疗用房管理制度
- 股权代持协议终止协议书
- 捡土豆装车合同协议书
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
- 海天对客户分级管理
- 薪资抵扣协议书模板
- 血管内导管相关性血流感染预防与诊治指南(2025)解读课件
评论
0/150
提交评论