3.1.3概率的基本性质(好)(课堂PPT)_第1页
3.1.3概率的基本性质(好)(课堂PPT)_第2页
3.1.3概率的基本性质(好)(课堂PPT)_第3页
3.1.3概率的基本性质(好)(课堂PPT)_第4页
3.1.3概率的基本性质(好)(课堂PPT)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.3概率的基本性质,事件的关系和运算,概率的几个基本性质,1,比如在掷骰子这个试验中:“出现的点数小于或等于3”这个事件中包含了哪些结果呢?,“出现的点数为1”“出现的点数为2”“出现的点数为3”这三个结果,一.创设情境,引入新课,上一节课我们学习了随机事件的概率,举了生活中与概率知识有关的许多实例。今天我们来研究概率的基本性质。在研究性质之前,我们先来研究一下事件之间有什么关系。,你能写出在掷骰子的试验中出现的其它事件吗?,2,C1=出现1点;C2=出现2点;C3=出现3点;C4=出现4点;C5=出现5点;C6=出现6点;,上述事件中有必然事件或不可能事件吗?有的话,哪些是?,D1=出现的点数不大于1;D2=出现的点数大于3;D3=出现的点数小于5;E=出现的点数小于7;F=出现的点数大于6;G=出现的点数为偶数;H=出现的点数为奇数;,一.创设情境,引入新课,2.若事件C1发生,则还有哪些事件也一定会发生?反过来可以吗?,3.上述事件中,哪些事件发生会使得K=出现1点或5点也发生?,6.在掷骰子实验中事件G和事件H是否一定有一个会发生?,5.若只掷一次骰子,则事件C1和事件C2有可能同时发生么?,4.上述事件中,哪些事件发生当且仅当事件D2且事件D3同时发生?,3,(一)事件的关系和运算:,B,A,如图:,例.事件C1=出现1点发生,则事件H=出现的点数为奇数也一定会发生,所以,注:不可能事件记作,任何事件都包括不可能事件。,(1)包含关系,一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作,二.剖析概念,夯实基础,4,(2)相等关系,B,A,如图:,例.事件C1=出现1点发生,则事件D1=出现的点数不大于1就一定会发生,反过来也一样,所以C1=D1。,一般地,对事件A与事件B,若,那么称事件A与事件B相等,记作A=B。,二.剖析概念,夯实基础,5,(3)并事件(和事件),若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A和事件B的并事件(或和事件),记作。,B,A,如图:,例.若事件K=出现1点或5点发生,则事件C1=出现1点与事件C5=出现5点中至少有一个会发生,则,二.剖析概念,夯实基础,6,(4)交事件(积事件),若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A和事件B的交事件(或积事件)记作,ABA,如图:,例.若事件M=出现1点且5点发生,则事件C1=出现1点与事件C5=出现5点同时发生,则,二.剖析概念,夯实基础,B,M=C1C2,7,(5)互斥事件,若为不可能事件(),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生。,A,B,如图:,例.因为事件C1=出现1点与事件C2=出现2点不可能同时发生,故这两个事件互斥。,二.剖析概念,夯实基础,8,(6)互为对立事件,若为不可能事件,为必然事件,那么称事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生。,如图:,例.事件G=出现的点数为偶数与事件H=出现的点数为奇数即为互为对立事件。,二.剖析概念,夯实基础,9,互斥事件可以是两个或两个以上事件的关系,而对立事件只针对两个事件而言。,从定义上看,两个互斥事件有可能都不发生,也可能有一个发生,也就是不可能同时发生;而对立事件除了要求这两个事件不同时发生外,还要求这二者之间必须要有一个发生,因此,对立事件是互斥事件,是互斥事件的特殊情况,但互斥事件不一定是对立事件。,从集合角度看,几个事件彼此互斥,是指这几个事件所包含的结果组成的集合的交集为空集;而事件A的对立事件A所包含的结果组成的集合是全集中由事件A所包含的结果组成的集合的补集。,互斥事件与对立事件的区别:,10,事件与集合之间的对应关系,11,1.概率P(A)的取值范围,(1)0P(A)1.,(2)必然事件的概率是1.,(3)不可能事件的概率是0.,(4)若AB,则P(A)P(B),(二)概率的基本性质,二.剖析概念,夯实基础,12,思考:掷一枚骰子,事件C1=出现1点,事件C3=出现3点则事件C1C3发生的频率与事件C1和事件C3发生的频率之间有什么关系?,结论:当事件A与事件B互斥时,二.剖析概念,夯实基础,13,2.概率的加法公式:,如果事件A与事件B互斥,则P(AB)=P(A)+P(B),若事件A,B为对立事件,则P(B)=1P(A),3.对立事件的概率公式,二.剖析概念,夯实基础,14,注意:1.利用上述公式求概率是,首先要确定两事件是否互斥,如果没有这一条件,该公式不能运用。即当两事件不互斥时,应有:,如果事件A与事件B互斥,则P(AB)=P(A)+P(B),P(AB)=P(A)+P(B)-P(),2.上述公式可推广,即如果随机事件A1,A2,An中任何两个都是互斥事件,那么有,P(A1A2An)=P(A1)+P(A2)+P(n),一般地,在解决比较复杂的事件的概率问题时,常常把复杂事件分解为几个互斥事件,借助该推广公式解决。,15,(1)将一枚硬币抛掷两次,事件A:两次出现正面,事件B:只有一次出现正面(2)某人射击一次,事件A:中靶,事件B:射中9环(3)某人射击一次,事件A:射中环数大于5,事件B:射中环数小于5.,(1),(3)为互斥事件,三.迁移运用,巩固提高,1、判断下列每对事件是否为互斥事件,(一)独立思考后回答,16,2、某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件(1)恰有一名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生,不互斥,三.迁移运用,巩固提高,互斥不对立,不互斥,互斥且对立,17,3、袋中装有白球3个,黑球4个,从中任取3个,是对立事件的为()恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球ABCD,B,三.迁移运用,巩固提高,18,4.从一批产品中取出三件产品,设A三件产品全不是次品B三件产品全是次品C三件产品不全是次品则下列结论正确的是()A.只有A和C互斥B.只有B与C互斥C.任何两个均互斥D.任何两个均不互斥,C,三.迁移运用,巩固提高,19,5.从装有两个红球和两个黑球的口袋里任取两个球,那么,互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个黑球D.至少有一个黑球与都是红球,C,三.迁移运用,巩固提高,20,6.如果事件A,B是互斥事件,则下列说法正确的个数有(),A.2个B.3个C.4个D.5个,21,6甲、乙两人下象棋,甲获胜的概率为30%,两人下成和棋的概率为50%,则乙获胜的概率为_,甲不输的概率为_,80%,20%,三.迁移运用,巩固提高,22,8.某射手射击一次射中,10环、9环、8环、7环的概率分别是0.24、0.28、0.19、0.16,计算这名射手射击一次1)射中10环或9环的概率;2)至少射中7环的概率.3)射中环数不足8环的概率.,三.迁移运用,巩固提高,(二)根据题意列清各事件后再求解,完成后自由发言.,0.52,0.87,0.29,23,三.迁移运用,巩固提高,9、在一次数学考试中,小明的成绩在90分以上的概率是0.13,在8089分以内的概率是0.55,在7079分以内的概率是0.16,在6069分以内的概率是0.12,求小明成绩在60分以上的概率和小明成绩不及格的概率,24,解析分别记小明成绩在90分以上,在8089分,在7079分,在6069分,60分以下(不及格)为事件A、B、C、D、E,显然它们彼此互斥,故小明成绩在80分以上的概率为P(AB)P(A)P(B)0.130.550.68.小明成绩在60分以上的概率为P(ABCD)P(A)P(B)P(C)P(D)0.130.550.160.120.96.小明成绩不及格的概率为P(E)1P(ABCD)10.960.04.,三.迁移运用,巩固提高,25,10、一盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球求:(1)取出球的颜色是红或黑的概率;(2)取出球的颜色是红或黑或白的概率,三.迁移运用,巩固提高,独立思考后,可以小组讨论,尝试用多种方法解题,理清思路,代表发言。,26,27,28,三.迁移运用,巩固提高,29,1、事件的关系与运算,区分互斥事件与对立事件,30,2.概率的基本性质:1)必然事件概率为1,不可能事件概率为0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论