




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模式识别课程上机实验报告 实验一、二维随机数的产生1、实验目的(1) 学习采用Matlab程序产生正态分布的二维随机数(2) 掌握估计类均值向量和协方差矩阵的方法(3) 掌握类间离散度矩阵、类内离散度矩阵的计算方法(4) 熟悉matlab中运用mvnrnd函数产生二维随机数等matlab语言2、实验原理多元正态分布概率密度函数:其中:是d维均值向量: 是dd维协方差矩阵:(1)估计类均值向量和协方差矩阵的估计 各类均值向量 各类协方差矩阵(2)类间离散度矩阵、类内离散度矩阵的计算类内离散度矩阵:, i=1,2总的类内离散度矩阵:类间离散度矩阵:3、实验内容及要求产生两类均值向量、协方差矩阵如下的样本数据,每类样本各50个。,(1) 画出样本的分布图;(2) 编写程序,估计类均值向量和协方差矩阵;(3) 编写程序,计算类间离散度矩阵、类内离散度矩阵;(4) 每类样本数增加到500个,重复(1)-(3)4、 实验结果(1) 、样本的分布图 (2) 、类均值向量、类协方差矩阵根据matlab程序得出的类均值向量为:N=50 : m1=-1.7160 -2.0374 m2=2.1485 1.7678N=500: m1=-2.0379 -2.0352 m2=2.0428 2.1270根据matlab程序得出的类协方差矩阵为:N=50: N=500: (3) 、类间离散度矩阵、类内离散度矩阵根据matlab程序得出的类间离散度矩阵为:N=50: N=500: 根据matlab程序得出的类内离散度矩阵为:N=50: N=500: 5、结论由mvnrnd函数产生的结果是一个N*D的一个矩阵,在本实验中D是2,N是50和500.根据实验数据可以看出,当样本容量变多的时候,两个变量的总体误差变小,观测变量各个取值之间的差异程度减小。6、实验程序clc;close all;clear all;%parameterN = 50;N_1 = 500; mu_1 = -2,-2;Sigma_1 = 1,0;0,1;r_1 = mvnrnd(mu_1,Sigma_1,N);r_11 = mvnrnd(mu_1,Sigma_1,N_1); mu_2 = 2,2;Sigma_2 = 1,0;0,4;r_2 = mvnrnd(mu_2,Sigma_2,N);r_22 = mvnrnd(mu_2,Sigma_2,N_1); %figuresfigure(1);plot(r_1(:,1),r_1(:,2),.);%将矩阵r_1的第一列当成横坐标,第二列当作纵坐标。title(样本数为50时的第一类样本分布图); figure(2);plot(r_2(:,1),r_2(:,2),.);title(样本数为50时的第二类样本分布图); figure(3);plot(r_11(:,1),r_11(:,2),.);title(样本数为500时的第一类样本分布图); figure(4);plot(r_22(:,1),r_22(:,2),.);title(样本数为500时的第二类样本分布图); %类均值向量和类协方差矩阵m_1 = mean(r_1);%样本数为50时第一类 类均值向量m_2 = mean(r_2);%样本数为50时第二类 类均值向量m_11 = mean(r_11);%样本数为500时第一类 类均值向量m_22 = mean(r_22);%样本数为500时第二类 类均值向量 sum1 = 0,0;0,0;for n = 1:N sum1 =sum1 + (r_1(n,:)-mu_1)*(r_1(n,:)-mu_1);endE_1 = sum1/N;%样本数为50时,第一类 类协方差矩阵 sum2 = 0,0;0,0;for n = 1:N sum2 =sum2 + (r_2(n,:)-mu_2)*(r_2(n,:)-mu_2);endE_2 = sum2/N;%样本数为50时,第二类 类协方差矩阵 sum3 = 0,0;0,0;for n = 1:N_1 sum3 =sum3 + (r_11(n,:)-mu_1)*(r_11(n,:)-mu_1);endE_11 = sum3/N_1;%样本数为500时,第一类 类协方差矩阵 sum4 = 0,0;0,0;for n = 1:N_1 sum4 =sum4 + (r_22(n,:)-mu_2)*(r_22(n,:)-mu_2);endE_22 = sum4/N_1;%样本数为500时,第二类 类协方差矩阵 %计算类间离散度和类内离散度Sb_1 = (m_1 - m_2)*(m_1 - m_2);%样本数为50时的,类间离散度矩阵Sb_2 = (m_11 - m_22)*(m_11 - m_22);%样本数为500时的,类间离散度矩阵 S_1 = 0,0;0,0;S_2 = 0,0;0,0;for n = 1:N S_1 = S_1 + (r_1(n,:) - m_1)*(r_1(n,:) - m_1); S_2 = S_2 + (r_2(n,:) - m_2)*(r_2(n,:) - m_2);endSW1 = S_1 + S_2;%样本数为50时的,总的类内离散度矩阵 S_11 = 0,0;0,0;S_22 = 0,0;0,0;for n = 1:N_1 S_11 = S_11 + (r_11(n,:) - m_11)*(r_11(n,:) - m_11); S_22 = S_22 + (r_22(n,:) - m_22)*(r_22(n,:) - m_22);endSW2 = S_11 + S_22;%样本数为500时的,总的类内离散度矩阵实验二、Fisher线性分类器的设计1、实验目的(1) 掌握Fisher线性判别方法(2) 掌握Bayes决策的错误率的计算(3) 掌握分类器错误率的估算方法(4) 对模式识别有一个初步的理解2、实验原理Fisher准则基本原理:如果在二维空间中一条直线能将两类样本分开,或者错分类很少,则同一类别样本数据在该直线的单位法向量上的投影的绝大多数都应该超过某一值。而另一类数据的投影都应该小于(或绝大多数都小于)该值,则这条直线就有可能将两类分开。 准则:向量W的方向选择应能使两类样本投影的均值之差尽可能大些,而使类内样本的离散程度尽可能小。这就是Fisher准则函数的基本思路。 y=WTX+W0 评价投影方向W的函数 :最佳W值的确定:求取使JF达极大值时的 w*:向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。 w0确定 : 当W0确定之后,则可按以下规则分类,使用Fisher准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。3、实验内容及要求考虑Fisher线性判别方法,利用实验1中程序产生的数据(分别在各类样本数均为50及500时),计算:1) 求解最优投影方向W;2) 画出表示最优投影方向的直线,并且标记出投影后的点在直线上的位置;3) 计算投影后的阈值权;4) 计算分类器的各类错误率及总的平均错误率; 5) 计算按最小错误率Bayes决策的错误率(各类先验概率相同)4、 实验结果 上图可以看出在N=50时的情况下绿色的点是第一类样本点,蓝色的*给出了第二类样本点,红色的直线是最优投影方向的直线,+标出的点是W0点,直线上不同颜色代表了不同类样本点所投影的点的位置。N=50时,类一的错误概率为0 类二的错误概率为 8% 平均错误概率为 1% Bayes决策错误率为0% 最佳投影方向5、结论通过对实验结果的探究,可以得出当样本数比较大的时候类错误概率会上升。的比例因子对于Fisher判别函数没有影响的原因:在本实验中,最重要的是W的方向,或者说是在此方向上数据的投影,所以W的比例因子,即它是单位向量的多少倍长就没那么重要了,不管比例因子大小是多少,在最后求投影时都会被消掉。6、实验程序N = 50;%样本数为50时mu_1 = -2,-2;Sigma_1 = 1,0;0,1;r_1 = mvnrnd(mu_1,Sigma_1,N); mu_2 = 2,2;Sigma_2 = 1,0;0,4;r_2 = mvnrnd(mu_2,Sigma_2,N); m_1 = mean(r_1);m_2 = mean(r_2); S_1 = 0,0;0,0;S_2 = 0,0;0,0;for n = 1:N S_1 = S_1 + (r_1(n,:) - m_1)*(r_1(n,:) - m_1); S_2 = S_2 + (r_2(n,:) - m_2)*(r_2(n,:) - m_2);endSW1 = S_1 + S_2;W_0 = -(m_1+m_2)/2;w = (m_1-m_2)*inv(SW1);%投影向量Sk = w(:,2)/w(:,1);%最优投影方向直线的斜率。x=-7:0.01:7;y = k*(x-W_0(:,1) + W_0(:,2);%最优投影方向直线 figure(3);plot(r_1(:,1),r_1(:,2),g.);title(样本数为50时的样本分布图);hold on;plot(r_2(:,1),r_2(:,2),*);plot(W_0(1),W_0(2),+);plot(x,y,r);%画出最优投影方向直线 A0=k -1;1 k;X0=zeros(2,N);for n=1:N b=k*W_0(:,1)-W_0(:,2) r_1(n,1)+k*r_1(n,2); X0(:,n)=inv(A0)*b;end A1=k -1;1 k;X1=zeros(2,N);for n=1:N b1=k*W_0(:,1)-W_0(:,2) r_2(n,1)+k*r_2(n,2); X1(:,n)=inv(A1)*b1;endplot(X0(1,:),X0(2,:),g);plot(X1(1,:),X1(2,:),b);hold off; en1=0;en2=0;for m=1:N if X0(1,m) W_0(:,1) en1=en1+1; end if X1(1,m) N2 erro1=erro1+1; end end endendfor i=1:N1 for j=1:N2 distance2(i,j)=sqrt(X2(1,i)-Y1(1,j)2+(X2(2,i)-Y1(2,j)2); distance2(i,j+N2)=sqrt(X2(1,i)-Y2(1,j)2+(X2(2,i)-Y2(2,j)2); end zuixiao=min(distance2(i,:); for j=1:2*N2 if distance2(i,j)=zuixiao if jN2 erro2=erro2+1; end end endenderro_pingjun=(erro1+erro2)/(2*N1)%k近邻k=10;number11=zeros(N1,1);number12=zeros(N1,1);MAX=1e5;k_erro1=0;for ii=1:N1 for i=1:k zuixiao=min(distance1(ii,:); for j=1:2*N2 if distance1(ii,j)=zuixiao if j=N2 number11(ii)=number11(ii)+1; else number12(ii)=number12(ii)+1; end distance1(ii,j)=MAX; end end end if number11(ii)number
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入考试题及答案
- 灯花考试题及答案
- 中文+酒店服务(英)(视频课)知到智慧树答案
- 国家基本公共卫生服务(第三版)培训考核试题及答案
- 2025版万科绿色建筑精装修施工合同(含节能环保技术)
- 2025年度企业级电脑系统全面升级与维护服务合同
- 2025版家具经销商市场调研分析合同下载
- 2025年吊车设备搬迁与道路通行证申请合同
- 2025年工业用地厂房租赁合同范本解析
- 2025版商铺装修与空间布局优化合同范本
- 党群服务面试题目及答案
- 卫生院医疗质量管理方案
- 2025-2026秋季学年第一学期【英语】教研组工作计划:一路求索不停歇研思共进踏新程
- 2025年山东省济南中考数学试卷及标准答案
- 叉车考试模拟试题及答案完整版
- 2025-2026学年人教版(2024)初中数学七年级上册教学计划及进度表
- 第1课 鸦片战争 课件 历史统编版2024八年级上册
- 物业管理师职业技能竞赛理论知识试题题库(1000题)
- 医学检验职称评审答辩
- 2025年安徽省中考历史试卷真题(含答案)
- T-CIATCM 002-2019 中医药信息数据元目录
评论
0/150
提交评论