




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省文普全力冲刺高考系列:近3年的南京的解几题套路总结据悉,南京教研室孙旭东主任命制解几题可能性极大,南京模拟题孙主任起很大作用,南京风格要注意.定点、定值、定性问题的解法在考前要认真复习.解析几何的重要的方法,特别是重要的计算程序要强化训练.在此背景下,我们真的有必要好好研究南京近3年的模拟试题了.2017一模T17.在平面直角坐标系中,已知圆经过椭圆的焦点.(1)求椭圆的标准方程;(2)设直线交椭圆于两点,为弦的中点,记直线的斜率分别为,当时,求的值.解:(1),椭圆的焦点在轴上,又圆经过椭圆的焦点,故椭圆的半焦距.3分,故椭圆的方程为.6分(2)方法一(韦达定理):设,联立,消去,得,.8分所以,又,所以,所以, 10分则. 14分方法二:设, 则,两式作差,得,又,又,在直线上,又在直线上,由可得,. 10分以下同方法一.【总结】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化。涉及弦长的问题中,应熟练地利用韦达定理计算弦长;涉及垂直关系时也往往利用韦达定理简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解;涉及中点弦问题往往利用点差法或韦达定理.2017.二模T18如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:1经过点(b,2e),其中e为椭圆C的离心率过点T(1,0)作斜率为k(k0)的直线l交椭圆C于A,B两点(A在x轴下方)(1)求椭圆C的标准方程;(2)过点O且平行于l的直线交椭圆C于点M,N,求 的值;(3)记直线l与y轴的交点为P若,求直线l的斜率k18(本小题满分16分)解:(1)因为椭圆 1经过点(b,2e),所以1因为e2,所以1因为a2b2c2,所以 1 2分整理得 b412b2320,解得b24或b28(舍) 所以椭圆C的方程为1 4分(2)设A(x1,y1),B(x2,y2)因为T(1,0),则直线l的方程为yk(x1)联立直线l与椭圆方程 消去y,得 (2k21)x24k2x2k280,所以 6分因为MNl,所以直线MN方程为ykx,联立直线MN与椭圆方程消去y得 (2k21)x28,解得x2因为MNl,所以 8分因为 (1x1)(x21)x1x2(x1x2)1 ,(xMxN)24x2,所以 10分(3)在yk(x1)中,令x0,则yk,所以P(0,k),从而 (x1,ky1), (x21,y2)因为 ,所以x1(x21),即x1x2 12分由(2)知, 由解得 x1,x2 14分因为x1x2, 所以 , 整理得 50k483k2340,解得k22或k2 (舍) 又因为k0,所以k 16分2017三模T18.如图,在平面直角坐标系xOy中,椭圆1(ab0)的右顶点和上顶点分别为A,B,M为线段AB的中点,且b2(1)求椭圆的离心率;(2)已知a2,四边形ABCD内接于椭圆,ABDC记直线AD,BC的斜率分别为k1,k2,求证:k1k2为定值解:(1)A(a,0),B(0,b),由M为线段AB的中点得M(,)所以(,),(a,b)因为b2,所以(,)(a,b)b2,整理得a24b2,即a2b 3分因为a2b2c2,所以3a24c2,即a2c所以椭圆的离心率e 5分(2)方法一:由a2得b1,故椭圆方程为y21 从而A(2,0),B(0,1),直线AB的斜率为 7分因为ABDC,故可设DC的方程为yxm设D(x1,y1),C(x2,y2)联立消去y,得x22mx2m220,所以x1x22m,从而x12mx2 9分直线AD的斜率k1,直线BC的斜率k2, 11分所以k1k2,即k1k2为定值 16分方法二:由a2得b1,故椭圆方程为y21 从而A(2,0),B(0,1),直线AB的斜率为 7分设C(x0,y0),则y021因为ABCD,故CD的方程为y(xx0)y0联立消去y,得x2(x02y0)x2x0y00,解得xx0(舍去)或x2y0所以点D的坐标为(2y0,x0) 13分所以k1k2,即k1k2为定值 16分2016一模T18.如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.(1)若圆与轴相切于椭圆的右焦点,求圆的方程;(2)若.求证:;求的最大值解:(1)因为椭圆右焦点的坐标为,所以圆心的坐标为,.2分从而圆的方程为. 4分(2)因为圆与直线相切,所以,即, 6分同理,有,所以是方程的两根, 8分从而. 10分设点,联立,解得,.12分同理,所以 14分, 当且仅当时取等号.所以的最大值为.16分2016二模T18在平面直角坐标系xOy中,点C在椭圆M:1(ab0)上若点A(a,0),B(0,),且(1)求椭圆M的离心率;(2)设椭圆M的焦距为4,P,Q是椭圆M上不同的两点,线段PQ的垂直平分线为直线l,且直线l不与y轴重合若点P(3,0),直线l过点(0,),求直线l的方程; 若直线l过点(0,1) ,且与x轴的交点为D,求D点横坐标的取值范围解:(1)设C (x0,y0),则(a,),(x0,y0)因为,所以(a,)(x0,y0)(x0,y0),得 2分代入椭圆方程得a2b2因为a2b2c2,所以e4分(2)因为c2,所以a29,b25,所以椭圆的方程为1, 设Q (x0,y0),则1 6分因为点P(3,0),所以PQ中点为(,), 因为直线l过点(0,),直线l不与y轴重合,所以x03,所以1, 8分化简得x029y02y0 将代入化简得y02y00,解得y00(舍),或y0将y0代入得x0,所以Q为(,), 所以PQ斜率为1或,直线l的斜率为1或,所以直线l的方程为yx或yx10分设PQ:ykx+m,则直线l的方程为:yx1,所以xDk将直线PQ的方程代入椭圆的方程,消去y得(59k2)x218kmx9m2450,设P(x1,y1),Q(x2,y2),中点为N,xN,代入直线PQ的方程得yN,12分代入直线l的方程得9k24m5 又因为(18km)24(59k2) (9m245)0, 化得m29k250 14分将代入上式得m24m0,解得0m4,所以k,且k0,所以xDk(,0)(0,)综上所述,点D横坐标的取值范围为(,0)(0,)16分2016三模T17如图,在平面直角坐标系中,已知椭圆的离心率为,点在椭圆上(1)求椭圆的方程;(2)设直线与圆相切,与椭圆相交于两点 若直线过椭圆的右焦点,求的面积;求证:解:(1)由题意,得,1,解得a26,b23所以椭圆的方程为1 (2)解法一 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k,所以切线方程为y(x)由方程组解得或 所以点P,Q的坐标分别为(,),(,),所以PQ 因为O到直线PQ的距离为,所以OPQ的面积为 因为椭圆的对称性,当切线方程为y(x)时,OPQ的面积也为综上所述,OPQ的面积为 解法二 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k,所以切线方程为y(x)把切线方程 y(x)代入椭圆C的方程,消去y得5x28x60设P(x1,y1) ,Q(x2,y2),则有x1x2 由椭圆定义可得,PQPFFQ2ae( x1x2)2因为O到直线PQ的距离为,所以OPQ的面积为 因为椭圆的对称性,当切线方程为y(x)时,所以OPQ的面积为综上所述,OPQ的面积为 解法一:(i)若直线PQ的斜率不存在,则直线PQ的方程为x或x当x时,P (,),Q(,)因为0,所以OPOQ当x时,同理可得OPOQ (ii) 若直线PQ的斜率存在,设直线PQ的方程为ykxm,即kxym0因为直线与圆相切,所以,即m22k22将直线PQ方程代入椭圆方程,得(12k2) x24kmx2m260.设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x2因为x1x2y1y2x1x2(kx1m)(kx2m)(1k2)x1x2km(x1x2)m2(1k2)km()m2将m22k22代入上式可得0,所以OPOQ综上所述,OPOQ 解法二:设切点T(x0,y0),则其切线方程为x0xy0y20,且xy2 (i)当y00时,则直线PQ的直线方程为x或x当x时,P (,),Q(,)因为0,所以OPOQ当x时,同理可得OPOQ (ii) 当y00时,由方程组消去y得(2xy)x28x0x86y0设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x2 所以x1x2y1y2x1x2因为xy2,代入上式可得0,所以OPOQ综上所述,OPOQ 2015一模T17在平面直角坐标系中,椭圆的右准线方程为,右顶点为,上顶点为,右焦点为,斜率为的直线经过点,且点到直线的距离为.(1)求椭圆的标准方程;(2)将直线绕点旋转,它与椭圆相交于另一点,当三点共线时,试确定直线的斜率.解:(1)由题意知,直线的方程为,即, 2分右焦点到直线的距离为, 4分又椭圆的右准线为,即,所以,将此代入上式解得,椭圆的方程为; 6分(2)由(1)知, 直线的方程为,8分联立方程组,解得或(舍),即,12分直线的斜率. 14分方法二: 由(1)知, 直线的方程为,由题,显然直线的斜率存在,设直线的方程为,联立方程组,解得,代入椭圆解得:或,又由题意知,得或,所以.方法三:由题,显然直线的斜率存在,设直线的方程为,联立方程组,得,所以,,当三点共线时有,即,解得或,又由题意知,得或,所以.2015二模T18、如图,在平面直角坐标系中,椭圆E:的离心率为,直线l:与椭圆E相交于A,B两点,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求的值;(2)求证:直线MN的斜率为定值.解:(1)因为e,所以c2a2,即a2b2a2,所以a22b2 2分故椭圆方程为1由题意,不妨设点A在第一象限,点B在第三象限由解得A(b,b)又AB2,所以OA,即b2b25,解得b23故a,b 5分(2)方法一:由(1)知,椭圆E的方程为 1,从而A(2,1),B(2,1)当CA,CB,DA,DB斜率都存在时,设直线CA,DA的斜率分别为k1,k2,C(x0,y0),显然k1k2从而k1 kCB 所以kCB 8分同理kDB 于是直线AD的方程为y1k2(x2),直线BC的方程为y1(x2)由解得 从而点N的坐标为(,) 用k2代k1,k1代k2得点M的坐标为(,) 11分所以kMN 1即直线MN的斜率为定值1 14分当CA,CB,DA,DB中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA的斜率不存在,从而C(2,1)仍然设DA的斜率为k2,由知kDB此时CA:x2,DB:y1(x2),它们交点M(2,1)BC:y1,AD:y1k2(x2),它们交点N(2,1),从而kMN1也成立由可知,直线MN的斜率为定值1 16分方法二:由(1)知,椭圆E的方程为 1,从而A(2,1),B(2,1)当CA,CB,DA,DB斜率都存在时,设直线CA,DA的斜率分别为k1,k2显然k1k2直线AC的方程y1k1(x2),即yk1x(12k1)由得(12k12)x24k1(12k1)x2(4k124k12)0设点C的坐标为(x1,y1),则2x1,从而x1 所以C(,)又B(2,1),所以kBC 8分所以直线BC的方程为y1(x2)又直线AD的方程为y1k2(x2)由解得 从而点N的坐标为(,) 用k2代k1,k1代k2得点M的坐标为(,) 11分所以kMN 1即直线MN的斜率为定值1 14分当CA,CB,DA,DB中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA的斜率不存在,从而C(2,1)仍然设DA的斜率为k2,则由知kDB此时CA:x2,DB:y1(x2),它们交点M(2,1)BC:y1,AD:y1k2(x2),它们交点N(2,1),从而kMN1也成立由可知,直线MN的斜率为定值1 16分2015三模T18在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线l:xm1与x轴的交点为B,BF2m (1)已知点(,1)在椭圆C上,求实数m的值;(2)已知定点A(2,0)若椭圆C上存在点T,使得,求椭圆C的离心率的取值范围;当m1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,若 ,m,求证:m为定值18解:(1)设椭圆C的方程为 1(ab0)由题意,得 解得 所以椭圆方程为1 因为椭圆C过点(,1),所以1,解得m2或m (舍去)所以m2 4分(2)设点T(x,y)由,得(x2)2y22(x1)2y2,即x2y22 6分由 得y2m2m因此0m2mm,解得1m2所以椭圆C的离心率e, 10分(方法一)设M(x0,y0),P(x1,y1),Q(x2,y2)则(x02,y0),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陵园保洁合同范本
- 房子的按揭合同范本
- 空调询价合同范本
- led灯具供货合同范本
- 门窗合同范本样板图
- 定购汽车合同范本
- 服务居间合同范本
- 新建房阴阳合同范本
- 分期购买设备合同范本
- 建房用地使用合同范本
- 《电子商务概论》(第3版)白东蕊主编 第一章电子商务概述课件
- 眼的生物化学讲义
- 全业务竞争挑战浙江公司社会渠道管理经验汇报
- 护理副高职称答辩5分钟简述范文
- GB/T 42195-2022老年人能力评估规范
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- GB/T 15155-1994滤波器用压电陶瓷材料通用技术条件
- 复变函数与积分变换全套课件
- 做一名优秀教师课件
- 企业标准编写模板
- 商场开荒保洁计划书
评论
0/150
提交评论