




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1焊接接头特有的疲劳属性金属疲劳的研究,要回答“裂纹从何处萌生?”,而对焊接接头而言,它没有裂纹萌生过程,焊缝上“大于零的”的微裂纹总是有的,问题是观察的放大镜的倍数是否足够大。金属疲劳研究的另一个要回答的问题是,“裂纹沿着哪个方向扩展?”,对焊接接头而言,它的扩展模式是明确的,裂纹要么从焊趾沿板的厚度方向扩展,要么从焊根向焊喉方向扩展。与金属疲劳不同,焊接接头中有残余应力,但是,不论其大与小,也不论其分布如何复杂,它是自平衡的,与外载荷无关。2疲劳评估时如何确定应力一般使用有限元方法与焊接分级的方法相配合进行疲劳评估。2.1名义应力法BS 7608以材料力学范畴中的名义应力来描述与定义焊接接头S-N 曲线。对于不同的接头类型(如喇叭口焊缝和对接焊缝)、载荷形式(如小的循环张力或者弯曲),就需要用不同的疲劳S-N 曲线。BS 7608编入的设计曲线,对于给定焊接接头,严格说,当分级接头上的名义应力可以用材料力学教科书的内容计算时才可用。在分析现实焊件时,名义应力的定义是很难确定的。如果简单的名义应力的定义不能用来表达易出现疲劳位置的应力状态,那么,可靠的疲劳寿命设计或寿命预测就无法实现。2.2热点应力法由于在焊趾处这样容易出现疲劳的位置的应力很难确定,以及应力的严重网格敏感性,有人就假设认为临近焊趾处的存在一些特定的位置,在这些位置处可以用表面外推法获得焊趾处的热点应力。由于缺乏同表面应力和外推应力的焊趾应力状态相关联的合理可靠的力学基础,这些方法只能作为一些经验主义的应力确定过程来看待。此外,在确定焊趾热点应力时用其它给定外推程序,一般也会遇到网格尺寸和单元类型敏感性问题。2.3结构应力法在焊接件的疲劳评估时,如何以一致的方式确定应力?多少年来,工程中的S-N 曲线一直采用名义应力表示(不可将它与用热点应力表示的S-N 曲线混为一谈,比较而言,后者很难获得),其历史原因是,研究总是从简单问题开始,名义应力可以用材料力学的公式计算,或者用贴片的方法测试,对简单的焊接接头而言,名义应力是合适的,虽然人们知道疲劳破坏总是发生在在焊缝上,但是,如何在焊缝上获得那些应力,却是困难的。从名义应力到热点应力,人们一直没有停止对焊缝或焊根上的高度非线性应力的追求,但是,直到董平沙教授提出了结构应力的概念之后,以及2007 年美国ASME 标准中增加了董平沙教授发明的网格不敏感的结构应力法及主S-N 曲线法,这个问题才得以根本解决。3 疲劳评估时如何选取S-N 曲线使用有限元方法与焊接分级的方法相配合对焊接接头进行疲劳评估时,还必须面对怎样从众多的可能中选择S-N 曲线的这样一个课题。如果需要考虑到众所周之的重要参数,如接头几何,载荷形式,基座厚度,和连续体上的连续变量而不是一些不连续量时,在基于焊接分级方法的S-N 曲线中,理论上会存在一个内有无穷多数据的曲线族。在不能确定地给出这些参数对一个给定S-N 曲线的定量关系的影响时,设计出一条S-N 曲线的工作就只能依靠经验和主观判断了。S-N 曲线的选择过程就会因人而异,即使是接头类型类似,寿命预测也常会导致很大的差别。4 疲劳评估时使用什么应力类型?焊接结构疲劳设计或评估时应当注意用什么样的应力类型呢?美国AAR 标准及当前国内使用的应力类型主要是名义应力;欧洲焊接界使用的应力类型主要是名义应力,热点应力,或称之为几何应力,前者用于工程,后者用于研究:而美国从2007 年起,在ASME(2007)标准中用的是结构应力及等效结构应力。4.1几个基本概念4.1.1名义应力与广义名义应力名义应力必须是能用材料力学公式计算出来的具有平均意义的应力,它可以贴片测得。在AAR、BS、IIW 标准中,S-N 曲线是用名义应力定义的,但是,工程运用中,当焊接接头的结构复杂、载荷也复杂时,这类用材料力学公式计算的名义应力是不存在的,此时,只能用有限元方法获得焊接接头上平均意义上的名义应力,这时,我们可以称其为广义名义应力。 由于名义应力是平均意义上的应力,这是为什么从有限元计算结果拾取名义应力时,不要从“焊缝”上拾取的基本原因。同时,还要强调指出:对于机车车辆而言,不论是车体,还是转向架,其焊趾附近的平均意义上的名义应力,或属于单向应力状态,或属于双向应力状态,拾取时,如果是双向应力状态,应拾取最大主应力代表名义应力参与计算,具体规定,见BS、IIW 标准。4.1.2热点应力(几何应力)是焊缝接头焊缝焊趾处的非线性应力的一部分,不能用贴片方式直接测得,但是,可以通过一组片外推插值间接获得,少数情况下可以用有限元方法获得,详细内容见IIW 标准。4.1.3结构应力是由外力引起的焊缝接头焊缝焊趾或焊根处上的应力,它具有明确的物理意义,可以通过一组片外推插值间接获得,亦可以用适当的有限元方法获得,它反映了焊址或焊根处的应力集中,详细内容见ASME(2007)标准。4.1.4等效结构应力是基于断裂力学裂纹扩展表达式,积分获得的一个参数,且用于计算疲劳寿命。在这个基于断裂力学表达式的等效结构应力中,不仅考虑了焊接接头板的厚度的影响、载荷模式的影响,也考虑了应力集中的影响,详细内容见ASME(2007)标准。4.2应力变化范围在研究金属疲劳问题时,不用这个概念,只有研究焊接结构时才会用这个到这个概念,换言之,应力变化范围这个概念是针对焊接疲劳而提出来的。如果忽视这个概念,继续沿用研究金属疲劳时所建立起来的概念,那将是非常不负责任的。应力范围定义如下: =max-min, max为波峰应力, min为波谷应力。对名义应力如此,对结构应力亦如此。在这里,平均应力是没有贡献的。最近20 余年的研究,主要是英国焊接研究所的Gueny 博士的研究表明,由于焊接过程的复杂热行为,结构焊接接头焊后的焊缝及其附近存有达到或接近屈服点的残余应力(注意,该残余应力具有自平衡性,与外载荷无关的独立性),因此在常幅应力循环作用的接头中,焊缝附近所承受的实际循环应力将从母材材料的屈服应力(或接近屈服应力)向下摆动,而不管其原始作用的循环特性如何,所以,焊接接头的疲劳性能用应力范围的概念来表述是科学的。这也是为什么BS 标准、IIW、ASME 标准采用应力范围而不采用与循环特性相关的信息获取S-N 曲线的根本原因。4.3 S-N曲线的数学属性及其敏度4.3.1不同标准的S-N曲线对比BS 标准认为:很低的应力变化范围对疲劳损伤也有贡献,因此S-N 曲线一直向下延伸。BS、IIW、ASME 标准中的S-N 曲线的数学描写形式完全一样,BS、IIW、ASME标准中都考虑了统计意义上的失效概率修正,而AAR 没有。美国ASME 标准中,其S-N 曲线只是一个数学模型。4.3.2 S-N曲线的数学本质4.4迈纳尔(Miner)损伤积累的能量属性在许多关于疲劳强度的经典著作中都可以查阅到迈纳尔(Miner)损伤积累理论。其中用能量观点解释迈纳尔损伤累积理论应该是最深刻的,即材料或焊接结构发生疲劳破坏所需要的总能量基本上是一个材料或结构常数,它不依赖加载方式和加载历程。换个角度,可以将其理解为:对于给定的材料或焊接结构,它为了抵抗疲劳破坏而储存的能量是给定的,不随加载方式及次序的改变而改变。当加载状态恶劣时,储存的抵抗疲劳的能量消耗就多一些,反之则少一些。用寿命来度量,前者寿命短一些,后者则长一些。这一见解亦可以从S-N 曲线上得到物理意义上的解释。对于一个给定的接头,例如Joint(1),12而N1N2, 意味着前者载荷条件恶劣,而N1N2则意味着前者寿命短于后者。从量纲上看,可以理解为力,N可以理解为用里程表示的距离。lg*lgN对应一个对数坐标系下面积,其物理本质就是能量。同样时,不同的S-N曲线下“面积”是不同的,即意味着储存的抵抗疲劳破坏的能量不同,面积大的,储存的抗疲劳破坏的能量就大一些,这一区别恰是不同材料或不同焊接结构抗疲劳破坏能力内因区别。同时,能量的耗损是一个累积过程,它与何时耗损无关,也与每次耗损的多少无关。5 关于AAR美国新造货车抗疲劳设计标准(简称为AAR)沿用的是金属材料母材的抗疲劳设计路线,没有考虑焊接结构的特殊性。焊接接头因残余应力的存在而用应力变化范围来度量S-N 曲线,而AAR 不是这样。AAR 计算寿命时,首先从载荷谱中计算用应力循环特性R,然后用修正的GOODMAN 公式来获得当前R的S-N特性数据。因疲劳极限Se随不同的R值变化,可由改进的Goodman 图得出。Se=b1-mRb 是R=0时的疲劳极限,m 是Goodman 曲线的斜率。AAR 没有考虑焊接工艺质量的影响。接头数据有限。客观地说,除了其载荷谱有使用参考价值外,其余的内容都过时了。6 关于BS7608它有以下特点: 首先,屈服强度700MPa 以下结构钢均可应用,其中含低合金结构钢、铁素体不锈钢(注:IIW 亦如此);其次,从大量焊接结构中,提炼出的焊接接头细节S-N 曲线(其级别分别为A、B、C、D、E、F、F2、G、S、T、W、X,见下表)不仅考虑了局部应力集中,尺寸与形状的最大允许不连续值,而且还考虑了应力方向、冶金影响、残余应力、疲劳裂纹形状,以及某些情况下的焊接工艺和焊后处理方法。此外,从设计与工艺的角度,还辨证地给出了一系列非常有价值的提高疲劳强度的具体措施,例如:关于工艺检查、焊趾打磨,关于焊缝细节与应力释放等等。7 关于IIW它提供的各种级别的焊接接头疲劳强度的S-N 曲线是许总多国际著名的焊接专家学者在实验室实测的。这些S-N 曲线具有工程实用性,因为通过试验获得这些S-N 曲线时,考虑了局部应力集中、一定范围内的焊缝尺寸和形状偏差、应力方向、残余应力、冶金状态、焊接过程和随后的焊缝改善处理。此外,如果这些焊接接头及其构件还存在其它原因的应力集中,该文件还给出了一些大于1 的应力集中系数,该应力集中系数可乘以疲劳载荷,亦可以除以表明S-N 曲线级别的FAT 值。总之,它的一切努力都是基于试验的。8 关于ASME(2007)众所周知,由于焊接过程热过程行为复杂,焊缝的疲劳强度必然低于母材的疲劳强度。当研究焊接结构的疲劳寿命时,必须把重点放在焊缝上,因为应力集中主要表现在焊缝上,焊接结构的疲劳破坏总是从焊缝开始。然而,焊缝疲劳寿命的可靠预测,多少年来一直是一个世界范围内的难题。就当前普遍采用的疲劳评估标准而言,虽然对此作了大量的工作,并获得了广泛应用,但它们主要是提取靠近焊缝一定距离处的名义应力来计算其疲劳寿命。 在实际应用中,这些标准至少有两个局限性:一是,当焊接接头的几何形状复杂、承受的外载荷也复杂时,很难从上述标准中找到合适接头类型,如果勉强替代,必然产生不可预测的评估偏差。这些标准中有限数量的S-N 曲线数据与工程中千变万化的要求的冲突不可避免;二是,用有限元法计算广义名义应力时,有限元网格划分的大小对该广义名义应力结果有较大影响,其计算结果存在不唯一性,疲劳评估的置信度扰动很大,因此预测结果误差难于控制。针对名义应力法远离应力集中的局限性,IIW 给出了几条基于热点应力(或称之为几何应力)的S-N 曲线数据,为了获得应力集中,它要么通过两个或两个以上的名义应力向焊趾处外推,要么通过焊趾处网格细化,例如在焊趾处利用子结构技术实现网格细化,但是其工程应用的局限性同样不可避免。网格不敏感的结构应力法及主S-N 曲线法是美国新奥尔良大学Pingsha Dong博士基于力学基本原理及大量焊接疲劳试验而发明的计算焊缝疲劳寿命的最新方法。该方法采用网格不敏感的结构应力计算方法(Mesh-insensitive Structural Stress Method)及他的主S-N 曲线(Master S-N)模型,可以相对准确地计算出空间任意走向的焊缝的疲劳寿命。2007年,美国ASME将其列为焊接结构焊缝疲劳寿命计算标准,2009 年,被欧洲列为计算标准。8.1 影响焊接接头抗疲劳能力的应力集中焊缝疲劳与金属疲劳完全不同,不仅理论完全不一样,试验数据也完全不一样。焊接接头对母材的屈服强度不敏感,试验证明焊接接头疲劳数据对屈服强度小于700MPa的母材是一样的,而金属疲劳则不是这样。不取决于母材自身的屈服强度,那么,决定焊接接头疲劳强度高低的参数又是什么呢?是应力集中。8.2 计算疲劳寿命的两阶段裂纹扩展模型8.3 主S-N 曲线统计表示9 关于力学本质的简单对比(1)AAR:用平均意义上的名义应力标定S-N 曲线,沿用金属母材疲劳寿命的计算路线,没有考虑焊接结构疲劳破坏力学行为的特殊性,一种接头对应一条S-N 曲线。(2)BS:用名义应力标定S-N 曲线,考虑了焊接结构疲劳破坏力学行为的特殊性,一种接头对应一条S-N 曲线。但是,当工程中焊接接头的几何形状复杂,或者承受的外力模式复杂,或者两个复杂性同时存在时,BS 标准中的S-N 曲线数据是远远不够用的。(3)IIW:用名义应力标定S-N 曲线,同时也给出了几条用几何应力标定S-N 曲线,也是一种接头对应一条S-N 曲线。且拓宽到铝焊接头,但是,存在的问题与BS 一样。(4)ASME:用揭示焊缝的焊根、焊趾上的应力集中的结构应力定义抗疲劳能力,给出的是对任何焊缝的焊根、焊趾都成立的广义的数学公式,计算结果具有唯一性。10 关于在设计阶段开展抗疲劳设计的切入点多少年来,铁道部标准(TB/T13351996)中那几页从教课书中抄写下来的关于疲劳设计的章节,真的没有任何实用价值。我国车辆焊接结构的抗疲劳设计,一直处于被动状态,与此有极大的关系。在设计阶段能不能开展抗疲劳设计?又如何开展抗疲劳设计?在相当多的设计人员、乃至决策者中,存在着下面这样的模糊认识:(1) 认为疲劳设计问题是一动态设计问题,需要载荷谱,手里没有动态载荷或应力谱,一切无从谈起。(2) 另外一种倾向是,当对疲劳问题不放心时,某些决策者的第一个指示是:立即去进行动应力测试。在他们看来,手里一旦握有了实为名义应力定义的动应力谱,完成疲劳寿命的计算任务易于反掌。换句话来说,他们将解决问题的希望全部放在动应力测试上。其实,之所以存在上述片面认识,第一,他们忽视了导致焊接结构破疲劳破坏的内因与外因的辨证统一, 将“静”与“动”对立起来,割裂了“静”与“动”的内在联系;第二,他们忽略了疲劳寿命的可靠计算的另外一个必要条件,即还需要有与名义应力对应的S-N曲线数据,而后者常常是相当模糊的。10.1关于导致疲劳破坏的外因外因可以归结为作用在焊接接头的焊缝上、且导致其上应力发生变化的一切外部载荷,例如,机械振动载荷,温度载荷等等。仔细观察IIW、BS 标准中给出的各类焊接接头几何,上面都注明了载荷的作用方向,那意味着,其对应的SN 曲线数据仅对该类载荷负责。由于机车车辆在线路上运行时,焊接接头上承受的变化的外载荷是一相当复杂的随机载荷,即使通过费时、费钱的在线实测,获得其统计意义上的变化规律(载荷谱)也是相当不容易的。由于载荷谱难于获得,退而求其次,可以直接在焊接接头附近通过贴片实测其动态应力,获得其应力谱。然而,在设计阶段,常常是除了图纸之外,我们一无载荷谱,二无贴片对象,从这个角度看,难于在设计阶段抗疲劳设计似乎是可以理解的。事实上,持有这种观点的人是只看到了问题的外因而忽视了问题的内因。10.2 关于导致疲劳破坏的内因内因,其实就是焊接接头自身的抗疲劳能力,如前所说,它是由应力集中这个参数控制的。动载荷也好,动应力也好,其实测的目的就是为了掌握导致疲劳破坏的外因,这项工作的重要性不难理解,但是,我在这里要强调的是,它只是一个完整的解决方案的一部分而不是全部。在对焊接接头开展抗疲劳设计时,关注“应力集中”极其重要。世界上著名焊接结构抗疲劳设计专家,美国伊利诺大学的劳伦斯教授、焊接接头疲劳大师这样说,导致疲劳破坏的原因有三个:“第一,应力集中;第二,应力集中;第三,还是应力集中。”不管其表象如何,焊接接头疲劳破坏的力学本质都可以归结为焊接接头上的应力高度集中。(1)结构宏观设计不合理(传力路径与焊缝走向的逻辑关系不合理)将导致应力集中;(2)接头型式的本身设计不合理(几何形状)将导致应力集中;(3)焊接工艺缺陷的微小裂纹(未焊透、未熔合、咬边、气孔、夹渣)将导致应力集中。 从断裂力学的角度看,这些微小裂纹尖端的应力集中的峰值是相当高的,致使裂纹前端进入屈服区的应力、应变场出现数学上的奇异性,此时,应力集中系数失去意义,并为此提出了应力强度因子的概念。相对的,如果将(1)与(2)称为结构宏观应力集中,那么(3)可以称为结构微观应力集中简言之,导致疲劳破坏的内因就是在载荷给定的条件下,焊接接头上几何宏观或微观的不连续性而导致的应力高度集中。如果说结构微观的应力集中,可以在制造工艺阶段做出判断与控制,那么,这个结构宏观的应力集中,则可以在设计阶段做出判断与控制。但是,从应力产生的过程看,应力集中也不过是现象,其本质可以归结为传力路径上抵抗变形的刚度的突然变化所致,刚度的连续性在局部被破坏。这一观点,对上述两种情况都成立。以IIW 标准中下图所示的三种对接平焊缝为例将问题具体化。假定平板长200mm,宽100mm,厚10mm,焊缝长度(两侧焊址间的距离)为15mm,疲劳试验
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 珠海监管属地管理办法
- 资本运作与新质生产力
- 出行安全培训
- 全新2025年大学语文考试试题及答案
- 出租车疲劳驾驶课件
- 社会诚信体系建设考题和答案
- 2025西安市购销合同示范文本
- 2025特定条件下的赠与合同
- 2025砂石料供应合同模板
- 出入相补原理课件
- 超级充电综合站及配套设施建设项目可行性研究报告
- 2025年湖北省武汉市中考语文真题(含答案)
- 中国心房颤动管理指南2025解读
- Unit1Weletotheunit课件译林版八年级英语上册
- 离职交接事项协议书范本
- 【高考真题】海南省2025年高考真题物理(含答案)
- 体育教师自我介绍课件
- 局工作秘密管理暂行办法
- 银行员工职业操守课件
- 初中开学第一课心理健康课
- 艺康servsafe培训课件
评论
0/150
提交评论