免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y=ax2+bx+c的图象和性质,x,y,怎样直接作出函数y=3x2-6x+5的图象?,函数y=ax+bx+c的图象,我们知道,作出二次函数y=3x2的图象,通过平移抛物线y=3x2可以得到二次函数y=3x2-6x+5的图象.,1.配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,老师提示:配方后的表达式通常称为配方式或顶点式,直接画函数y=ax+bx+c的图象,4.画对称轴,描点,连线:作出二次函数y=3(x-1)2+2的图象,2.根据配方式(顶点式)确定开口方向,对称轴,顶点坐标.,3.列表:根据对称性,选取适当值列表计算.,a=30,开口向上;对称轴:直线x=1;顶点坐标:(1,2).,学了就用,别客气,作出函数y=2x2-12x+13的图象.,(1,2),(3,-5),例.求次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点式,一般地,对于二次函数y=ax+bx+c,我们可以利用配方法推导出它的对称轴和顶点坐标.,1.配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,老师提示:这个结果通常称为求顶点坐标公式.,顶点坐标公式,因此,二次函数y=ax+bx+c的图象是一条抛物线.,根据公式确定下列二次函数图象的对称轴和顶点坐标:,如图,两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛物线可以用y=0.0225x+0.9x+10表示,而且左右两条抛物线关于y轴对称,钢缆的最低点到桥面的距离是多少?两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴交流.,函数y=ax2+bx+c(a0)的应用,.钢缆的最低点到桥面的距离是少?你是怎样计算的?与同伴交流.,可以将函数y=0.0225x2+0.9x+10配方,求得顶点坐标,从而获得钢缆的最低点到桥面的距离;,由此可知钢缆的最低点到桥面的距离是1m。,两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴交流.,想一想,你知道图中右面钢缆的表达式是什么吗?,你还有其它方法吗?与同伴交流.,直接利用顶点坐标公式再计算一下上面问题中钢缆的最低点到桥面的距离以及两条钢缆最低点之间的距离,由此可知钢缆的最低点到桥面的距离是1m。,请你总结函数函数y=ax2+bx+c(a0)的图象和性质,想一想,函数y=ax2+bx+c和y=ax2的图象之间的关系是什么?,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0时,向右平移;当0时向上平移;当0时,向下平移)得到的.,驶向胜利的彼岸,回味无穷,二次函数y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州第十三中学2026届数学高一第一学期期末检测试题含解析
- 农业产业发展方案策略报告总结
- 止水带热空气老化、耐碱性试验记录
- 2025年秋河北大学版(新教材)小学信息科技四年级全一册(上册)期末综合测试卷及答案(3套)
- 第二章 函数(高效培优单元测试-强化卷)数学北师大版2019必修第一册(解析版)
- 汉语言文学本科毕业论文-汉语言本科毕业论文
- 农村经济致富产业发展门槛比较高原因真相分析2025.11.8.3
- 基于ADAMS的悬架系统动力学仿真分析与优化设计
- MBA工商管理毕业论文格式模板
- 浅谈对黄自艺术歌曲《春思曲》的感悟
- 南京市建筑工程施工图BIM智能审查数据标准技术导则
- 医院物业管理服务方案投标文件(技术方案)
- 统战工作宣传课件
- 广西南宁市天桃实验校2026届中考语文全真模拟试卷含解析
- 就业帮扶车间培训课件
- 制药工程导论课件第六章
- 护理专业求职综合展示
- 泌尿外科发展简史
- 中医推拿按摩对膝关节病的疗效
- 院外转运的护理
- 中国老年患者术后谵妄防治专家共识
评论
0/150
提交评论