函数值域的常见解法_第1页
函数值域的常见解法_第2页
函数值域的常见解法_第3页
函数值域的常见解法_第4页
函数值域的常见解法_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数值域的常见解法,1函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。,知识点,2确定函数的值域的原则当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。,3求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围二次函数法:利用换元法将函数转化为二次函数求值域反函数法:将求函数的值域转化为求它的反函数的值域判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;单调性法:利用函数的单调性求值域;不等式法:利用平均不等式求值域;图象法:当一个函数图象可作时,通过图象可求其值域求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;几何意义法:由数形结合,转化斜率、距离等求值域。,例1求下列函数的值域,应用举例,形如:的函数可令,则转化为关于t的二次函数求值。形如含有的结构的函数,可用三角换元令x=acos求解。,配方法2,4,换元法:,三角换元法:,例2求下列函数的值域,形如:可用反函数法或分离常数法求;形如:可用判别式法求。,反函数法或分离常数法:,判别式法:,例3求下列函数的值域,可转化为各项为正,并和或积为定值时,可考虑用不等式法求值域,但要注意“=”问题;形可化为用它在上递减,在上递增,求值域。,练习:求值域,不等式法:,用的单调性:,例4求下列函数的值域,形如:可转化为斜率或用三角函数有界性求解;形如的题目可转化为距离求解;形如的高次函数可用导数求解。,变式二:例6已知函数的定义域为R,值域为0,2,求m,n的值。,变式一:例5已知函数值域为-1,5,求实数a,c的值。,三小结1熟练掌握求函数值域的几种方法,并能灵活选用;2求值域时要务必注意定义域的制约;3含字母参

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论