




免费预览已结束,剩余72页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲多元线性回归模型3.1多元线性回归模型的估计3.1.1多元线性回归模型及其矩阵表示在计量经济学中,将含有两个以上解释变量的回归模型叫做多元回归模型,相应地,在此基础上进行的回归分析就叫多元回归分析。,它是解释变量的多元线性函数,称为多元线性总体回归方程。假定通过适当的方法可估计出未知参数的值,用参数估计值替换总体回归函数的未知参数,就得到多元线性样本回归方程:,它代表了总体变量间的依存规律。,3.1.2多元线性回归模型的基本假定,假设6:解释变量之间不存在多重共线性,假设1用矩阵形式表示:,3.1.3多元线性回归模型的估计1参数的最小二乘估计,上述(k+1)个方程称为正规方程。用矩阵表示就是:,即:,将上述过程用矩阵表示如下:,根据矩阵求导法则可得:,例3.1.1经过研究,发现家庭书刊消费水平受家庭收入及户主受教育年数的影响。现对某地区的家庭进行抽样调查,得到样本数据如表3.1.1所示,其中y表示家庭书刊消费水平(元/年),x表示家庭收入(元月),T表示户主受教育年数。下面我们估计家庭书刊消费水平同家庭收入、户主受教育年数之间的线性关系。,表3.1.1某地区家庭书刊消费水平及影响因素的调查数据表,借助于计量经济软件EViews对表3.1.1进行分析,具体步骤为(1)建立工作文件;(2)输入数据;(3)回归分析表3.1.2回归结果,2最小二乘估计量的性质用最小二乘法得到的多元线性回归的参数估计量具有线性、无偏性、最小方差性。,3.1.4随机误差项方差的估计若记,3.2多元线性回归模型的检验3.2.1拟合优度检验拟合优度是指样本回归直线与观测值之间的拟合程度。1多重决定系数,总离差平方和=残差平方和+回归平方和自由度:(n-1)=(n-k-1)+kESS:由回归直线(即解释变量)所解释的部分,表示x对y的线性影响。RSS:是未被回归直线解释的部分,由解释变量x对y影响以外的因素而造成的。,多重决定系数或决定系数是指解释变差占总变差的比重,用来表述解释变量对被解释变量的解释程度:,2修正的决定系数,(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;(2)对于包含的解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低。,修正的决定系数与未经修正的多重决定系数之间有如下关系:,3.2.2赤池信息准则和施瓦茨准则为了比较所含解释变量个数不同的多元回归模型的拟合优度,常用的标准还有赤池信息准则(Akaikeinformationcriterion,AIC)和施瓦茨准则(Schwarzcriterion,SC),其定义分别为,这两个准则均要求仅当所增加的解释变量能够减少AIC或SC值时才能在原模型中增加该解释变量。,3.2.3偏相关系数3.2.3回归模型的总体显著性检验:F检验回归模型的总体显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。检验模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立,即是检验方程:,图3.2.1阴影部分为F检验的否定区域,F检验的具体步骤为:,借助于计量经济软件EViews对表3.1.1中的样本回归方程作F检验。F统计量的值:F=146.2973,n=18,n-k-1=18-2-1=15,在5%的显著性水平下,查自由度为(2,15)的F分布表,得临界值,3.2.4回归参数的显著性检验:t检验回归参数的显著性检验,目的在于检验当其他解释变量不变时,该回归系数对应的解释变量是否对因变量有显著影响。由参数估计量的分布性质可知,回归系数的估计量服从如下正态分布:,用t统计量进行回归参数的显著性检验,其具体过程如下:,借助于计量经济软件EViews对表3.1.1中的样本回归方程的系数作显著性检验:,至此,我们已全面分析了例3.1.1所提出的问题。现将从例3.1.1的回归分析结果整理如下:,3.3多元线性回归模型的预测,3.3.1点预测点预测就是根据给定解释变量的值,预测相应的被解释变量的一个可能值。设多元线性回归模型为:,3.3.2区间预测,3.4非线性回归模型3.4.1可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。1对数模型模型形式:,模型适用对象:对观测值取对数,将取对数后的观测值(lnx,lny)描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x与y的变量关系。容易推广到模型中存在多个解释变量的情形。例如,柯布道格拉斯生产函数形式:,例3.4.1根据表3.4.1给出的1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),劳动投入L(用从业人员度量,单位为万人),以及资本投入K(用全社会固定投资度量,单位:亿元)。表3.4.11980-2003年中国GDP、劳动投入与资本投入数据,利用EViews软件解题如下:首先建立工作文件,其次输入样本数据Q、L、K,再次,在EViews软件的命令窗口,依次键入:GENRlnGDP=LOG(GDP)GENRlnL=LOG(L)GENRlnK=LOG(K)LSlnGDPClnLlnK输出结果如下(表3.4.2):表3.4.2回归结果,2半对数模型在对经济变量的变动规律研究中,测定其增长率或衰减率是一个重要方面。在回归分析中,我们可以用半对数模型来测度这些增长率。模型形式:,3倒数模型,4多项式模型多项式回归模型在生产与成本函数这个领域中被广泛地使用。多项式回归模型可表示为,3.4.2非线性化模型的处理方法无论通过什么变换都不可能实现线性化,这样的模型称为非线性化模型。对于非线性化模型,一般采用高斯牛顿迭代法进行估计,即将其展开成泰勒级数之后,再利用迭代估计方法进行估计。3.4.3回归模型的比较1图形观察分析(1)观察被解释变量和解释变量的趋势图。(2)观察被解释变量与解释变量的相关图。2模型估计结果观察分析对于每个模型的估计结果,可以依次观察以下内容:(1)回归系数的符号和值的大小是否符合经济意义,这是对所估计模型的最基本要求。(2)改变模型形式之后是否使判定系数的值明显提高。(3)各个解释变量t检验的显著性。(4)系数的估计误差较小。,3残差分布观察分析模型的残差反映了模型未能解释部分的变化情况,在方程窗口点击ViewActual,Fitted,ResidualTable(或Graph),可以观察分析以下内容:(1)残差分布表中,各期残差是否大都落在的虚线框内,这直观地反映了模型拟合误差的大小及变化情况。(2)残差分布是否具有某种规律性,即是否存在着系统误差。(3)近期残差的分布情况。另外,利用判定系数比较模型的拟合优度时,如果两个模型包含的解释变量个数不同,则应采用“调整的判定系数”。除了调整的判定系数之外,人们还使用另外两个指标SC(SchwarzCriterion,施瓦兹准则)和AIC(AkaikelnformationCriterion,赤池信息准则)来比较含有不同解释变量个数模型的拟合优度。,3.5受约束回归在建立回归模型时,有时根据经济理论需要对模型中变量的参数施加一定的约束条件。对模型施加约束条件后进行回归,称为受约束回归(restrictedregresslon),与此对应,不加任何约束的回归称为无约束回归(unrestrictedregression)。3.5.1模型参数的线性约束一般地,估计线性模型时可对模型参数施加若干个线性约束条件。例如,对模型,其中,式中第二项为一非负标量,于是,式(3.5.9)表明受约束样本回归模型的残差平方和大于无约束样本回归模型的残差平方和,这意味着,通常情况下,对模型施加约束条件会降低模型的解释能力。,约束条件的个数。,表3.5.1无约束条件的C-D生产函数估计结果,表3.5.2有约束条件的C-D生产函数估计结果,在EViews软件中,当估计完C-D生产函数后,在方程结果输出窗口,点击View按钮,然后在下拉菜单中选择CoefficientTestWaldCoefficientRestrictions,屏幕出现图3.5.1对话框。,图3.5.1Wald检验定义对话框在对话框中输入系数的约束条件,若有多个,则用逗号分开。本例中输入:C(2)+C(3)=1,得检验结果见表3.5.3。表3.5.3Wald检验输出结果,由表3.5.3可知,在0.05显著性水平下,两个检验均仍然不能拒绝和为1的原假设,原假设为真。这个结果与直观判断差异明显,主要是因为变量LOG(L)的回归系数标准误差较大。需要指出的是,这里介绍的F检验适合所有关于参数线性约束的检验,32节中对回归模型总体的线性检验,可以归结到这里的F检验上来。,3.5.2解释变量的选择在实际建模时,选取哪些变量作为解释变量引入模型,对模型的优劣有直接的影响作用。模型中,既不能遗漏重要的解释变量,又要防止过多的变量带来的多重共线性问题或对因变量没有什么影响的不必要的解释变量。这里介绍两种有用的用于选择解释变量的检验。考虑如下两个回归模型:,在EViews软件中,要检验冗余变量,选择Equation工具栏中的ViewCoefficientTestRedundantVariable功能。在对话框中输入需要检验的变量。Testadd检验用于在方程中检验引入新的解释变量,检验引入引入新的解释变量是否对模型有利。要检验缺失变量,选择Equation工具栏中的ViewCoefficientTestOmittedVariable功能。在对话框中输入需要检验的变量。,在例3.4.1的方程窗口(表3.4.2)输出结果中选择ViewCoefficientTestRedundantVariable-LikelihoodRatio,屏幕出现对话图3.5.2框。,图3.5.2多余变量检验定义对话框在话框中输入希望减少的序列名。在本例,输入LOG(L),点击OK,计算结果如表3.5.4所示。表3.5.4Testdrop检验输出结果,与Wald检验类似,EViews也给出F统计量和相伴概率。这里,在0.05显著性水平下,两个检验均拒绝变量LOG(L)不显著的假设,LOG(L)不是多余的变量,说明劳动投入量对GDP有显著影响。,3.5.3参数的稳定性检验:邹氏检验建立模型时往往希望模型的参数是稳定的,即所谓的结构不变,这将提高模型的预测与分析功能。然而,经济结构的变化往往导致计量经济模型结构也发生变化。例如,例3.4.1我国C-D生产函数例子中,从GDP、L、K散点图的变化上容易判断1992年前后这种结构的变化。下面给出一个结构变化的检验。,图3.5.3中国1980-2003年GDP、L、K散点图,这两个回归方程是否显著的不同?如果这两个回归方程的差别并不显著,说明模型所反映的经济结构在时间上(或截面上)是稳定的。否则是不稳定的。邹至庄(Chow)提出了如下的Chow检验。,因此,对参数稳定性的原假设(3.5.22)的检验步骤为:首先,分别以两个连续的时间序列作为两个样本运用式(3.5.18)进行回归,得到相应的残差平方和RSS1与RSS2;其次,将两序列并为一个大样本后运用式(3.5.18)进行回归,得到大样本下的残差平方和RSSR;最后,通过式(3.5.25)的F统计量,在事先给定的显著性水平下进行假设检验。如果F大于相应的临界值,则拒绝原假设,认为发生了结构变化,参数是非稳定的。该检验方法也被称为邹氏参数稳定性检验(Chowtestforparameterstability)。,本例利用EViews软件进行Chow检验。在操作上,首先根据表3.4.1,利用EViews软件可得如下结果(见表3.5.5)。表3.5.5回归结果,在方程窗口按View/StabilityTests/ChowBreakpointTest顺序逐一单击鼠标键,打开ChowTest对话框(图3.5.4)。,图3.5.4打开ChowTest对话框然后在对话框内输入转折点年份,1992(图3.5.5)。,图3.5.5ChowTest对话框,计算结果如表3.5.6所示。表3.5.6计算结果,根据F分布表,可得在5的显著性水平下,F临界值为3.55(分子自由度为3,分母自由度为18)。因此,得到F值2.9355小于临界值为3.55,接受原假设。由此可知中国GDP和L、K间的关系(即C-D生产函数),在不同时期(1980-1991与1992-2003)没有什么不同,即中国C-D生产函数结构是稳定的。在运用Chow检验时,需要注意以下一些限制条件:(1)必须满足上面讲到的古典假定条件。(2)Chow检验的结果仅仅告诉我们是否存在结构差异,而无法得知导致这种差异的原因。(3)Chow检验假定知道结构发生变化的时间点。,3.6案例分析中国经济增长影响因素分析根据表3.6.1给出的1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),最终消费CS(单位:亿元),投资总额I(用固定资产投资总额度量,单位:亿元),出口总额(单位:亿元)统计数据,试对中国经济增长影响因素进行回归分析。表3.6.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国工程咨询行业市场分析及投资价值评估前景预测报告
- 2025年新能源行业企业绿色生产与环保标准执行报告
- 2025年新能源汽车智能座舱车载信息娱乐系统研究报告:发展趋势与竞争格局
- 1.1 鸦片战争 说课稿 2024-2025学年统编版八年级历史上册
- 2025年氢能重卡商业化运营对传统运输行业的颠覆性影响报告
- 2025年制造业数字化转型数据治理:数据治理与智能制造设备智能升级的实践案例研究
- 2.2气候(第2课时) 说课稿2023-2024学年人教版地理八年级上册
- 2025年中国高纯度铅行业市场分析及投资价值评估前景预测报告
- 2025年中国刚性防水材料行业市场分析及投资价值评估前景预测报告
- 3.4 世界的聚落 (新说课稿)2023-2024学年七年级上册地理(湘教版)
- 2025海康威视视频安全门禁系统使用手册
- 安检流程课件
- 2025综合能力测试真题题库及答案
- 2025-2026学年沪教牛津版(深圳用)小学英语五年级上册教学计划及进度表
- 带状疱疹后神经痛护理查房
- 保密文印管理办法
- 肝癌的中医护理
- 【公开课】+动物细胞(教学课件)生物人教版2024七年级上册
- 高血糖健康宣教
- 【城市道路监理大纲】市政一级主干道路工程监理大纲
- 艾梅乙反歧视培训课件
评论
0/150
提交评论