证明或判断等差(等比)数列常用方法_第1页
证明或判断等差(等比)数列常用方法_第2页
证明或判断等差(等比)数列常用方法_第3页
证明或判断等差(等比)数列常用方法_第4页
证明或判断等差(等比)数列常用方法_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

证明或判断等差(等比)数列的常用方法湖北省 王卫华 玉芳翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?且听笔者一一道来一、 利用等差(等比)数列的定义在数列中,若(为常数)或(为常数),则数列为等差(等比)数列这是证明数列为等差(等比)数更最主要的方法如:例1(2005北京卷)设数列的首项,且,记()求;()判断数列是否为等比数列,并证明你的结论解:();(),所以,所以,猜想:是公比为的等比数列证明如下:因为所以是首项为,公比为的等比数列评析:此题并不知道数列的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。例2(2005山东卷)已知数列的首项,前项和为,且()证明数列是等比数列;()略解:由已知可得时两式相减得:,即,从而,当时,所以,又,所以,从而故总有,又,从而所以数列是等比数列评析:这是常见题型,由依照含的式子再类似写出含的式子,得到的形式,再利用构造的方法得到所要证明的结论本题若是先求出通项的表达式,则较繁注意事项:用定义法时常采用的两个式子和有差别,前者必须加上“”,否则时无意义,等比中一样有:时,有(常数);时,有(常数)二运用等差或等比中项性质是等差数列,是等比数列,这是证明数列为等差(等比)数列的另一种主要方法例3(2005江苏卷)设数列的前项为,已知,且其中为常数(1)求与的值;(2)证明数列为等差数列;(3)略解:(1)由,得把分别代入 ,得解得,()由()知,即,又-得,即又-得,又,因此,数列是首项为1,公差为5的等差数列评析:此题对考生要求较高,通过挖掘的意义导出递推关系式,灵活巧妙地构造得到中项性质,这种处理大大简化了计算例4(高考题改编)正数数列和满足:对任意自然数成等差数列,成等比数列证明:数列为等差数列证明:依题意,且,由此可得即数列为等差数列评析:本题依据条件得到与的递推关系,通过消元代换构造了关于的等差数列,使问题得以解决三运算数学归纳法这种方法关键在于猜想要正确,用数学归纳法证明的步骤要熟练,从“时命题成立”到“时命题成立”要会过渡例5(2004全国高考题)数列的前项和记为,已知,证明:数列是等比数列 证明:由,知, ,猜测是首项为1,公比为2的等比数列下面用数学归纳法证明:令.(1)当时,成立(2)当时,成立假设时命题成立,即那么当时,命题成立综上知是首项为1,公比为2的等比数列例6(2005浙江卷)设点和抛物线其中,由以下方法得到:,点在抛物线上,点到的距离是到上点的最短距离,点在抛物线上,点到的距离是到上点的最短距离(1)求及的方程(2)证明是等差数列解:(I)由题意得:设点是上任意一点,则令则由题意:即又在上,解得:,故方程为(II)设点是上任意一点,则令,则由题意得g,即又即 (*)下面用数学归纳法证明当时, 等式成立假设当时,等式成立,即则当时,由(*)知 又即当时,等式成立由知,等式对成立是等差数列评析:例5是常规的猜想证明题,考查学生掌握猜想证明题的基本技能、掌握数列前项和这个概念、用数学归纳法证明等差数列的方法;例6是个综合性比较强的题目,通过求二次函数的最值得到递推关系式,再直接猜想然后用归纳法证明,解法显得简洁明了,如果直接利用递推关系式找通项,反而不好作 四反证法解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑如:例7(2000年全国高考(理)设是公比不相等的两等比数列,证明数列不是等比数列证明:设的公比分别为,为证不是等比数列只需证事实上,又不为零,故不是等比数列评析:本题主要考查等比数列的概念和基本性质、推理和运算能力,对逻辑思维能力有较高要求要证不是等比数列,只要由特殊项(如)就可否定一般地讲,否定性的命题常用反证法证明,其思路充分说明特殊化的思想方法与正难则反的思维策略的重要性五看通项与前项和法若数列通项能表示成(为常数)的形式,则数列是等差数列;若通项能表示成(均为不为0的常数,)的形式,则数列是等比数列 若数列的前项和Sn能表示成 (a,b为常数)的形式,则数列等差数列;若Sn能表示成(均为不等于0的常数且q1)的形式,则数列是公比不为1的等比数列这些结论用在选择填空题上可大大节约时间 例8(2001年全国题)若S是数列的前项和,,则是( ).等比数列,但不是等差数列 .等差数列,但不是等比数列等差数列,而且也是等比数列 .既非等比数列又非等差数列解析:用到上述方法,一下子就知道答案为B,大大节约了时间,同时大大提高了命中率六熟记一些常规结论,有助于解题若数列是公比为的等比数列,则(1)数列(为不等于零的常数)仍是公比为的等比数列;(2)若是公比为的等比数列,则数列是公比为的等比数列;(3)数列是公比为的等比数列;(4)是公比为的等比数列;(5)在数列中,每隔项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为;(6),等都是等比数列;(7)若成等差数列时,成等比数列;(8)均不为零时,则成等比数列;(9)若是一个等差数列,则正项数列是一个等比数列若数列是公差为等差数列,则(1)成等差数列,公差为(其中是实常数);(2),(为常数),仍成等差数列,其公差为;(3)若都是等差数列,公差分别为,则是等差数列,公差为;(4)当数列是各项均为正数的等比数列时,数列是公差为的等差数列;(5)成等差数列时,成等差数列例9(96年全国高考题)等差数列的前项和为30,前项和为100则它的前项和为()130170210260解:由上面的性质得:成等比数列,故,故选评析:此题若用其它方法,解决起来要花比较多的时间,对于选择题来说得不断尝试记住上面这些结论,在做选择填空题时可大大节约时间,并且能提高命中率从上面可以看出:证明或判断等差(等比)数列的方法有许多种,作题时到底用何种方法,一般说来大题用前四种:定义法、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论