3.9定积分的应用PPT演示课件_第1页
3.9定积分的应用PPT演示课件_第2页
3.9定积分的应用PPT演示课件_第3页
3.9定积分的应用PPT演示课件_第4页
3.9定积分的应用PPT演示课件_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我们知道:,3.9.1定积分的微元法,3.9定积分的应用,其面积为:,以a,b为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以a,b为积分区间的定积分:,元素法的一般步骤:,这个方法通常叫做元素法,曲边梯形的面积,3.9.2.1.平面图形的面积,3.9.2定积分在几何上的应用,1)求由上下两条曲线y=f上(x)与y=f下(x)及左右两条直线x=a、x=b所围成平面图形的面积A.,取横坐标x为积分变量,在区间a,b上任取一子区间x,x+dx,在其上的小曲边梯形可近似看成高为y,底为dx的小矩形,则面积元素为,曲边梯形的面积,取纵坐标y为积分变量,在区间c,d上任取一子区间y,y+dy,在其上的小曲边梯形可近似看成宽为x,高为dy的小矩形,则面积元素为,2)求由左右两条曲线与及上下两条直线y=c、y=d所围成平面图形的面积A.,解(1)画图取x为积分变量,(3)求面积元素:,例3.66计算曲线和直线x=1及x轴所围成平面图形的面积A,(2)确定积分区间:0,1,(4)计算积分:,(4)求面积元素:,得积分区间,解方程组,解(1)画图取x为积分变量,(2)确定积分区间:,(3)确定上下曲线:,(5)计算积分:,解(1)画图,取y为积分变量.,解方程组,得积分区间,(2)确定积分区间:,(3)确定左右曲线:,(4)求面积元素:,(5)计算积分:,旋转体就是由一个平面图形饶这平面内一条直线旋转一周而成的立体这直线叫做旋转轴,圆柱,圆锥,圆台,3.9.2.2旋转体的体积,旋转体的体积为,解(1)画图,确定积分区间:,例3.69计算由直线、直线x=h及x轴围成的直角三角形绕x轴旋转而成的圆锥体体积,(2)求体积元素:,(3)计算积分:所求圆锥体的体积为,解这个旋转椭球体也可以看作是由半个椭圆及x轴围成的图形绕x轴旋转而成的立体.,(1)画图,确定积分区间:,(2)求体积元素:,(3)计算积分:所求椭球体的体积为,特殊地,当时,得球体的体积公式:,解,体积元素,选y为积分变量,两曲线的交点,3.8.3.1变力作功,3.8.3定积分在物理上的应用,案例3.73已知弹簧每拉长0.02m要用9.8N的力,求把弹簧拉长0.1m所作的功.,解由胡克定律,在弹性限度内,拉伸(或压缩)弹簧所需的力F和弹簧的伸长量(或压缩量)成正比,即,其中k为比案例系数,由题设x=0.02m时,F=9.8N,所以k=490,则F=490 x.,(1)建立坐标系如图.取伸长量x为积分变量,(2)确定积分区间:,(3)求功元素:,(4)计算积分:所求的功为,=2.45(J),解,(1)建立坐标系如图,(2)确定积分区间:,(3)求功元素:,这一薄层水的重力为,功元素为,(J),(4)计算积分:所求的功为,3.8.3.2液体的压力,解挡板的一个端面是圆,与水接触的是下半圆.,(1)建立坐标系如图,(2)确定积分区间:,(3)求压力元素:,(4)计算积分:所求压力为,(N),案例3.76一水库闸门呈倒置的等腰梯形垂直地位于水中,两底的长度分别为4m和6m,高为6m,当闸门上底正好位于水面时,求闸门一侧受到的水压力(水密度为103kg/m3).,(3)压力元素为dP=gx2ydx,(2)确定积分区间:x0,6,(4)计算积分:所求压力为,例3.72设某产品在时刻t总产量的变化率为f(t)=100+12t-0.6t2(单位/小时),求从t=2到t=4这两小时的总产量.,解因为总产量P(t)是它的变化率的原函数,所以从t=2到t=4这两小时的总产量为,=260.8(单位),例3.73已知某产品的边际成本函数为固定成本为1000元,求总成本函数.,解,例3.74已知生产某商品x单位时,边际收益函数为(元/单位),试求生产x单位时总收益以及平均收益.并求生产这种商品2000单位时的总收益和平均收益.,解因为总收益是边际收益函数在0,x上的定积分,所以生产x单位时总收益为,则平均单位收益,当生产2000单位时,总收益为R(2000)=360000(元),平均单位收益为,按照需求-供给模型,随着商品数量的增加,消费者愿意支付的价格是下降的.在需求与供给的均衡点,当市场上产品的数量为q*,则市场价格为p*=pd(q*).市场机制使得消费者以总费用R=p*q*得到q*单位商品.,设想q*单位商品不是一个单位一个单位地投放市场.对第一个单位商品,消费者愿意出价pd(1);这样,购买该单位商品总费用是pd(1);对第二个单位商品,消费者愿意出价pd(2);这样,购买该单位商品总费用是pd(2);按照这种思路,消费者愿意出价pd(i)购买第i单位商品.所以,消费者实际上是以,pd(1)+pd(2)+pd(q*),购得这q*单位商品的.这中间有个差额:,在经济学中被称为消费者剩余,如图所示.,3.9.3.2由供需函数求消费者剩余,如果商品单位数很大,需求曲线p=pd(q)下的面积A就是消费者原本应该支付的费用:,就是消费者剩余.“剩余”实际上是表示“我们得到的大于我们所支付的代价”,或者说,消费者剩余代表了消费者得到的、超过他们为商品支付的代价的额外效用.而“效用”这个概念,在经济学上表示消费者从某种商品中所得到的有用性质或满足的量.这种额外的好处根源于边际效用递减规律.,而量,例3.75假设某种商品的需求集和供给集分别是,通过求解这两个集的交,可以得到均衡价格p*=12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论