统计与品管六西格玛统计过程控制及Minitab操作实例应用_第1页
统计与品管六西格玛统计过程控制及Minitab操作实例应用_第2页
统计与品管六西格玛统计过程控制及Minitab操作实例应用_第3页
统计与品管六西格玛统计过程控制及Minitab操作实例应用_第4页
统计与品管六西格玛统计过程控制及Minitab操作实例应用_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六西格玛统计过程控制及Minitab操作实例应用,统计过程控制,统计-基于概率的决策规则过程-任何重复的工作或步骤控制-监察过程的表现,提供反馈,流程波动的种类,流程变差存在两种普遍原因的波动波动是现有流程所固有的特殊原因的波动波动是由于外来因素的影响而发生的,普遍原因的波动,此类波动存在于每一个流程之中利用现有技术是不能控制或减少这一类的波动只有这一类波动存在的时候的流程能力是流程最好的能力,也叫作短期能力,它反映了流程的技术能力。反映这一类波动大小的指标为ST。,抽样的技术:合理子组,利用合理子组(Rationalsubgroup)技术抽取样本合理子组内为短期样本不受外来因素的影响组内波动仅仅是普遍原因的结果组内数据点连续抽取,时间相隔很短同一班次同一员工同一批次物料,抽样的技术:合理子组,每个子组内的波动反映了普遍原因的波动,练习,计算以下数据的ST,R,流程能力指标Cp和Cpk,Cp没有考虑流程中心的偏移Cpk考虑了流程中心的偏移,流程能力指标的例子,指标的说明:,过程能力指标讨论,1.CP会小于CPK么?2.CP什么情况下等于CPK?3.顾客为什么要求我们提供CP和CPK值呀?4.CP和CPK为什么必须成对分析?,过程长期的波动,Cp和Cpk反映了过程的潜在的能力,但是随着时间的进行,过程表现出来的波动往往要比普遍原因的波动要大。过程实际波动的大小LT用来衡量。过程实际的表现称为过程绩效指标(ProcessPerformance),过程长期的波动,S:所有数据的标准差,过程绩效指标Pp和Ppk,Pp没有考虑流程中心的偏移Ppk考虑了流程中心的偏移,过程能力指标和过程绩效指标,如果过程没有特殊原因的影响,这四个指标将会很接近,受控状态(InControl)和失控状态(OutofControl),如果流程仅受普遍原因的作用,那么其输出特征分布将是稳定的并且是可预测的。如果流程受特殊原因的作用,那么其输出特征是不稳定且不可预测的。,利用假设检验探测特殊原因,当流程只有普遍原因作用时,流程输出是稳定的且服从一定的分布,典型的分布为正态分布,当子组的平均值落在控制图的界限外,它就以图表说明在样本均值和历史均值中存在差别,控制图的组成,控制图(ControlChart),控制图(Controlchart)是在1924年,由美国贝尔实验室休哈特博士(WalterShewhart)发明的流程控制工具。控制把观测到的统计量与计算到的“控制界限”的在图标上作比较。控制图:用于监察流程的输入或输出(XorY)用于识别流程是否处于失控状态用于探测流程中由特殊原因造成的波动不能告诉我们流程输出是否符合规范既不能识别也不能消除特殊原因,控制图的种类,为了选择合适的控制图表来监控流程,首先决定要监控流程的变量是连续(variable)的还是离散的(attribute),变量控制图的种类,特殊原因可能影响连续型变量分布的中心位置或离散程度,因此有两类变量控制图:监控中心位置变化的平均值图Xbarchart个体图Individualchart(样本量n=1)中值图medianchart监控离散程度变化的极差图rangechart标准差图standarddeviationchart移动极差图movingrangechart(样本量n=1,MR=|Xi-Xi-1|)通常这两种类型的控制图是结合在一起使用,常用的有:平均值标准差图Xbar-Schart平均值极差图Xbar-Rchart单值移动极差图I-MRchart,使用控制图的一般步骤,1.选择要监控的流程变量2.确定数据收集点3.测量系统分析4.建立数据收集计划1.合理子组计划(Rationalsubgroup)2.样本量3.抽取频率5.选择控制图6.收集数据7.建立初始控制限8.分析图形1.识别失控状态2.排除特殊原因3.重新计算控制限9.把控制限应用于于持续控制,案例,问题:某一轴承制造工厂其客户要求对某一轴套的内孔孔径进行SPC控制。客户对其内孔孔径的要求是11.400.05mm。选择要监控的流程变量:流程输出Y为内孔孔径(Diameter)确定数据收集点:加工完毕后测量测量系统分析孔径用游标卡尺测量GageR&R分析结果显示测量系统合适建立数据收集计划利用合理子组技术,每次抽取5个样本(样本量n=5)每4小时抽取一组样本数据共抽取30组数,为什么要使用合理子组,合理子组应满足以下两个特点:组内差异仅仅反映了普遍原因的波动组间的差异尽可能捕捉到特殊原因的波动利用合理子组能够:充分利用中心极限定理(使得非正态的流程能够应用控制图技术)准确估计流程能力(长期和短期),最大化控制图的作用,好的数据收集计划能够最大程度探测到流程的变化。数据收集考虑以下因素:样本大小除非经济原则上不可行,每组样本内应含有多个部件(一般5个)。某些流程只能抽取一个样本。取样频率流程表现越好,需要的取样频率越低。基于对流程表现的经验,取样频率是可以变化的。考虑以每小时,每天,每班,每批等。合理子组组数要建立控制限,至少应收集25组数据共100个数据以上。,选择控制图,对于前面的案例:根据情况,选择平均值极差图(Xbar-Rchart),平均值标准差图Xbar-Schart,平均值极差图Xbar-Rchart,个体移动极差图I-MRchart,Yes,No,Yes,No,n1?,n9?,计算初始控制限,先计算平均值图的总体平均值,也就是中心线CL:计算控制上限UCL:计算控制下限LCL:对于较大的样本量,给定流程的控制限将会变窄,且图表的灵敏度较大,计算控制限,计算极差图的平均极差:计算R图的控制限UCL和LCL,计算控制限:查表,Xbar-R图控制限的计算公式,A2,D3,D4称为修哈特系数,可查表而得.,关于限制的注意点,不要将控制界限(Controllimit)与规格界限(Specificationlimit)相混淆。规格界限是流程无关的。例如,他们可以代表为了满足CTQ特性的工程上要求。控制界限是流程相关的,它们反映了流程预期的差波动范围。规格界限是针对个别数值的,然而在平均值图上,控制界限是针对样本平均值的。,利用Minitab计算控制限(供参考),打开Minitab文件holediameter.mtw选择“统计控制图子组的变量控制图Xbar-R”,利用Minitab计算控制限(供参考),如下图设置对话框,初始控制图,Minitab为我们建立了初始的控制图,分析图形,流程处于受控状态吗?应在计算流程能力和持续流程控制之前,对控制图进行分析:首先分析极差图。在初级阶段中,若你能识别引起失控状态的特殊原因波动,你就应该排除这些点重新计算控制限。若发生下列情况,流程就处于失控状态(OutofControl):有1点落在控制界限之外连续9点位于中心线的同一侧连续6点持续上升或下降连续14点交替上升下降连续3点中的2点超出中心线同一侧的2范围外连续5点中的4点超出中心线同一侧的1范围外连续15点落在中心线两侧的1范围内连续8点超出中心线两侧的1范围外,失控模式,以下4种模式同时适用于平均值图和极差图:,失控模式,以下4种模式只适用于平均值图(这4中模式的探测一般通过自动的SPC系统完成):,两种类型的控制图表错误,把一个特殊原因的波动看作普遍原因的波动错过了识别和消除特殊原因的机会,把一个普遍原因的波动看作特殊原因的波动妨碍稳定的流程,寻找不存在的特殊原因而浪费资源,图表告诉了我们关于流程的一些什么?,正常流程的变化,“没有显示任何改变”此图表示受控的流程,当中流程波动没有一定的模式。这些点不可预期的上下波动,但有在中线周围聚集的趋向(但也不是很紧密)和在控制界限内。这种形态是任何控制图表的目标。它不一定显示出流程有最佳能力或流程符合规格。但它显示了流程有稳定性。,回到案例,第24点出现特殊原因的波动排除第24组数据,重新建立控制限,对流程进行持续控制,把控制限延伸至流程的持续控制和持续改进没有适当的培训SPC=“挂在墙上的图表”警告信号(失控模式)被用作探测不合格。当生产作为第一优先级时,操作员就会忽视警告信号。S.O.P是被用来检查不合格的。SPC将起不到预防的作用。操作员受到关于SPC全面的培训,但是当流程失控时,管理层并没有授权员工停止机器进行调查没有管理层的支持,员工适用SPC仅仅是检查不合格,而不是预防。操作员受到关于SPC全面的培训并且遵守其中的规则,当流程失控时,每个人都理解并且同意停机分析原因最佳状态下,SPC能在错误发生前发出警告信号,不合格不会再发生。,控制图应用的例子,属性控制图,属性控制图,当不能提供特征值测量时使用以计数/分类为基础(进行/不进行,通过/不及格,好/坏),如产品颜色不对,表面刮痕.控制界限和变量控制图的计算方法不同,但控制方式相似,属性的术语,不合格(Nonconformity)指单位或样本中未符合客户要求的单个特征。指的是产品中的一个不合格不合格产品(Nonconformingitem)指单位或样本的检测中有一个或更多不合格。指的是含有不合格的产品,属性控制图可用于监控不合格或不合格品,属性判定的一致性,精确定义不合格是重要的前提定义了不合格后,要用认同一致性(AttributeAgreementAnalysis)的方法对所有的人员进行测试测试通过后,统一明确判断标准,对检查人员进行培训并在现场实施,这些是属性控制图实施的前提,控制图表的选择,样本量的考虑当关注一定数量产品中不合格品或不合格的数量时,则样本大小的连贯性很重要。当关注产品中不合格品或不合格的比率变化时,不要求样本量一致。,不合格,不合格品,不变的样本量,变动的样本量,数学基础,泊松分布(PoissonDistribution),二项分布(BinomialDistribution),不合格品数图(nP图),测量一定数量产品中不合格品的数量。控制图中的中心线定义为:控制界限以二项分布为基础。因为是用不合格品的件数来记录的,故样本量要相同。每一组样本中都应该含有至少5件不合格品:合格率-90%:样本量大小50合格率-95%:样本量大小100合格率-98%:样本量大小250合格率-99%:样本量大小500,不合格品率图(P图),记录一定数量产品中不合格品的比例,控制图中心线定义为:控制限是以二项分布为基础因为控制的是不合格品的比率,样本量大小不需要相等。可用于跟踪产品不合格品率,人员缺勤率等.,不合格数图(C图),记录一定数量产品中不合格的总数量,控制图中心线定义为:控制限以泊松分布为基础:要求样本量不变,单位不合格数图(U图),记录一件单位产品中不合格的比例,控制图中心线定义为:控制限是以泊松分布为基础:因为u是单位产品含有不合格的比例,所以不要求相等的样本量。,案例,问题:PCB装配后须通过系统的功能测试,测试结果为“通过”和“不通过”。为了了解PCB产品功能测试的状况,现利用SPC对功能测试的不通过产品进行监控。1.选择流程指示:“不通过”产品的比例P。2.建立数据收集计划1.每天收集一组数据2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论