高等数学A(一)复习资料及PPT上海大学出版社_第1页
高等数学A(一)复习资料及PPT上海大学出版社_第2页
高等数学A(一)复习资料及PPT上海大学出版社_第3页
高等数学A(一)复习资料及PPT上海大学出版社_第4页
高等数学A(一)复习资料及PPT上海大学出版社_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章不定积分,1.不定积分的概念与性质,已知物体运动的位置函数s=s(t),求时刻t的瞬时速度v=s(t)。微分学解决的问题,已知物体运动的速度函数v=v(t)求运动的位置函数s=s(t)。积分学解决的问题,一般,已知函数f(x),要找另一个函数F(x),使F(x)=f(x)。积分学的任务,一、原函数与不定积分的概念,定义1:,已知f(x)是一个定义在区间I上的函数,,则称F(x)为f(x)在I上的原函数。,如:,x2是2x的原函数;,dsinx=cosxdx,sinx是cosx的原函数;,s(t)是v(t)的原函数。,如果存在函数F(x),使在I内的任一点都有,有关原函数的几个问题,1.,在什么条件下,f(x)一定存在原函数?,原函数存在定理:,若f(x)在区间I上连续,,则在I上必存在原函数。,2.,如果f(x)有原函数,那么共有几个?,设F(x)为f(x)的原函数,则,如果有多个,则它们之间有何关系?,f(x)如有原函数,就有无穷多个。,F(x)+C包含了f(x)的所有原函数。,3.,如果f(x)有一个原函数F(x),那么F(x)+C是否包含了f(x)的,所有原函数?,定义2:,函数f(x)的全体原函数就称为,f(x)的不定积分。记作,其中,积分号,f(x),被积函数,f(x)dx,被积表达式,x,积分变量,例:,若F(x)为f(x)的一个原函数,则,不定积分的几何意义:,f(x)的一个原函数F(x)的图形称为f(x)的一条积分曲线,,方程为y=F(x).,就表示了一族积分曲线y=F(x)+C.,它们相互平行,即在横坐标相同的点处有相同的切线斜率。,x,积分号与微分号的作用相互抵消。,由不定积分的定义,,则有,又,或,积分号与微分号的作用抵消后加任意常数C。,例:,求通过点(1,2),且其上任一点处的切线斜率均为6x的一条曲线。,解:,设所求曲线方程为y=f(x).,由题意,曲线上点(x,y)的切线斜率,为一簇积分曲线。,二、基本积分表,注意:,依基本导数公式与不定积分的定义,,既可得基本积分公式(15个):,请同学们参见教材第238页。,基本积分表,是常数);,说明:,简写为,三、不定积分的性质,性质2.,被积函数中不为零的常数因子可提到积分号外。,利用基本积分表和不定积分性质,可计算一些简单函数的不定积分。注意3点:,1、在分项积分后,对每个不定积分的任意常数不必一一写出。可在积分号全部不出现后简写为一个常数。,2、检验积分结果是否正确,只要将其结果求导,看它的导数是否等于被积函数即可。,3、由于微分形式不变性,积分表中的每个公式中的x可用其它变量u替代,公式仍正确。,技巧:先将被积函数变形,化为表中所列的类型,然后再积分。,例题讨论,求下列不定积分:,例1.,例2.,例3.,例4.,掌握被积函数的恒等变形。,例5.,同理,,例6.,例7.,例8.,例9.,(假分式,=多项式+真分式),从理论上来讲,只需把积分结果求导,就可检验积分是否正确。但由于函数变形及原函数间可相差一个常数等因素,一般不检验。,所以注重积分过程的正确是至关重要的。,即每一步运算都要看能否还原到上一步。,课外作业,习41(A),1(2,6),2,5,习41(B),1(1,3,4,5,10),4,一、第一类换元法,(凑微分法),1.,凑常数,例1:,2,(2x=u),2.换元积分法,例2:,例3:,(+1),(x+1=u),例4:,/a,a,-1,同理:,例5:,同理:,例6:,2.,凑函数(变量),定理1.,设F(u)是f(u)的一个原函数,且,原函数,且有换元公式:,u=(x)可导,证明:,换元公式:,(x)=u,前例:,(u=sinx),例1:,例2:,题目做得熟练后,中间变量u可以不写出来。,例3:,同理:,例4:,(secx+tanx),(secx+tanx),同理:,例5:,或,例6:,2,例7:,例8:,例9:,一般:,例10:,例11:,一般:,例12:,例13:,课外作业,习42(A),3(4,6,7,9,11),4(3,4,5,9,12),习42(B),1(双),2(1,3,5,7,8,10),二、第二类换元法,(变量代换法),定理2.,设x=(t)是单调的可导函数,,换元公式:,令x=(t),,1.三角代换,例1:,分析:,目的:消去根式。,利用三角恒等式:,若令x=asint,被积函数,例1:,解:,令x=asint,dx=acostdt,t,x,a,例2:,分析:,若令x=atant,解:,令x=atant,dx=asec2tdt.,t,x,a,也可令x=asht(t0),解:,令x=asht,,dx=achtdt,例3:,分析:,若令x=asect,解:,令x=asect,dx=asecttantdt,t,x,a,或令x=acht(t0),如:,小结:,当被积函数含有因子:,目的:去根号。,例题讨论,例1:,解:,t,x,例2:,解:,令x=tant,dx=sec2tdt.,x,1,t,2.根式代换,例1:,分析:,目的:化分数幂为整数幂。(去根号),解:,-1+1,回代,例2:,解:,例3:,令x=sect,dx=asecttantdt,解二:,解一:,3.倒代换,对形如:,前例3:,例4:,解二:,解一:,熟记!,教材第251页积分公式:(16)(24),补积分公式:,基本积分表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论