




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七下数学第十章:二元一次方程组知识点总结1、 基本概念:二元一次方程:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。使二元一次方程两边的值相等的两个未知数的值,叫做这个二元一次方程的解。二元一次方程组:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。两个二元一次方程组的公共解,叫做二元一次方程组的解。一般来说,二元一次方程组只有唯一的一个解。 附:二元一次方程组的解有三种情况: a. 有一组解:如方程组方程组的解为 b. 有无数组解:如因为这两个方程实际上是一个方程,所以此类方程组有无数组解。 c. 无解:如, 因为方程化简后为x+y=5 这与方程相矛盾,所以此类方程组无解。 注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。 2、 方程组解法方程组一般解法消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种:代入消元法和加减消元法。 补充填空选择常用的几种解法:1) 加减-代入混合使用的方法. 例1: 解:-得x-y=-1即x=y-1 把代入得13(y-1)+14y=41 得 y=2 把y=2代入得x=1 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元. 2) 换元法 例2:令x+5=m,y-4=n 原方程可写为 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。3) 另类换元 例3: 令x=t, y=4t 方程2可写为:5t+64t=29 得 t=1 所以x=1,y=4 3、 列方程(组)解应用题 列方程(组)解应用题一般步骤是: 1) 审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。2) 设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 3) 用含未知数的代数式表示相关的量。 4) 寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 5) 解方程及检验。 6) 答。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 注意:单位换算:如,“小时”“分钟”的换算;s、v、t单位的一致等。 常用等量关系:行程问题:速度时间=路程相遇路程速度和=相遇时间追及问题(环形)快的路程-慢的路程=曲线的周长追及问题(直线)追及时间路程差速度差 航速问题:此类问题分为水中航速和风中航速两类顺流:航速=静水(无风)中的速度+水(风)速 逆流:航速=静水(无风)中的速度-水(风)速工程问题:工作效率工作时间=工作量浓度问题:溶液浓度=溶质银行利率问题:免税利息=本金利率时间和差倍总分问题:较大量=较小量+多余量,总量=倍数倍量 产品配套问题:加工总量成比例工程问题:工作量=工作效率工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)增长率问题:原量(1增长率)=增长后的量原量(1减少率)=减少后的量浓度问题:溶液浓度=溶质银行利率问题:免税利息=本金利率时间税后利息=本金利率时间本金利率时间税率利润问题:利润=售价进价,利润率=(售价进价)进价100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的二元一次方程组习题1求适合的x,y的值2解下列方程组(1)(2)(3)(4)3解方程组:4解方程组:5解方程组:6已知关于x,y的二元一次方程y=kx+b的解有和(1)求k,b的值(2)当x=2时,y的值(3)当x为何值时,y=3?7解方程组:(1);(2)8解方程组:9解方程组:10解下列方程组:(1)(2)11解方程组:(1)(2)12解二元一次方程组:(1);(2)13在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解1415解下列方程组:(1);(2)16解下列方程组:(1)(2)1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少? 2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元? 3、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?5、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。求A、B两人骑自行车的速度。(只需列出方程即可)6、已知甲、乙两种商品的原价和为200元。因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。求甲、乙两种商品的原单价各是多少元。7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。若有一支球队最终的积分为18分,那么这个球队平几场?9、现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?1求适合的x,y的值 2解下列方程组(1) (2)(3)(4)3解方程组:4解方程组:5解方程组:6已知关于x,y的二元一次方程y=kx+b的解有和(1)求k,b的值(k=,b=)(2)当x=2时,y的值(y=)(3)当x为何值时,y=3?(x=1)7解方程组:(1);(2)8解方程组:9解方程组:10解下列方程组:(1)(2)11解方程组:(1)(2)12解二元一次方程组:(1);(2)13在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解解:(1)把代入方程组,得,解得:把代入方程组,得,解得:甲把a看成5;乙把b看成6;(2)正确的a是2,b是8,方程组为,解得:x=15,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 耳部肿瘤课堂
- 好奇产品培训体系构建
- 瞄准新质生产力
- 听了郝红英老师孩子心里发展敏感期与家庭教育的心得体会模版
- 奥康客户关系管理体系构建
- 办公室行政管理
- 技术岗位工作总结模版
- 大学生职业规划大赛《视觉传达设计专业》生涯发展展示
- 大学生职业规划大赛《人力资源管理专业》生涯发展展示
- 细胞治疗产品开发与应用
- 推销实战技巧与客户优秀服务技巧
- 福建新费用定额交底材料
- 器质性精神障碍患者的护理
- 趣味英语课件完整版
- 大学武术智慧树知到答案章节测试2023年浙江大学
- 前列腺增生症患者围手术期的护理
- 五防系统调试报告
- 日语综合教程第六册 单词表
- 市委政研室主任关于如何写稿子的讲话
- 在建项目雨季施工(防汛)安全隐患排查表
- 《广东省普通高中学生档案》模板
评论
0/150
提交评论