




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数知识点2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在轴上的角的集合为终边在轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域5、长度等于半径长的弧所对的圆心角叫做弧度6、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是7、弧度制与角度制的换算公式:,8、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,9、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正Pvx y A O M T 11、三角函数线:,12、同角三角函数的基本关系:;13、三角函数的诱导公式:,口诀:函数名称不变,符号看象限,口诀:奇变偶不变,符号看象限14、函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象函数的性质:振幅:;周期:;频率:;相位:;初相:函数,当时,取得最小值为 ;当时,取得最大值为,则,15、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 辅助角公式,其中降幂公式(sin2)x=1-cos2x/2 (cos2)x=i=cos2x/2万能公式 令tan(a/2)=t sina=2t/(1+t2) cosa=(1-t2)/(1+t2) tana=2t/(1-t2)公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2及3/2与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan (以上kZ) 注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀 奇变偶不变,符号看象限。同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tan cot1 sin csc1 cos sec1 商的关系: sin/costansec/csc cos/sincotcsc/sec 两角和差公式 两角和与差的三角函数公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式)tan2A=2tanA/(1-tan2A) sin2a=2sinacosa cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin2(/2)(1cos)2 cos2(/2)(1cos)2 tan2(/2)(1cos)(1cos) 另也有tan(/2)=(1cos)/sin=sin/(1+cos)万能公式 sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2)万能公式推导 附推导: sin2=2sincos=2sincos/(cos2()+sin2().*, (因为cos2()+sin2()=1) 再把*分式上下同除cos2(),可得sin22tan/(1tan2() 然后用/2代替即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。和差化积公式 三角函数的和差化积公式 sinsin2sin()/2cos()/2 sinsin2cos()/2sin()/2 coscos2cos()/2cos()/2 coscos2sin()/2sin()/2积化和差公式 三角函数的积化和差公式 sin cos0.5sin()sin() cos sin0.5sin()sin() cos cos0.5cos()cos() sin sin0.5cos()cos()和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b)/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b)/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b)/2 cosa*sinb=(sin(a+b)-sin(a-b)/2 cosa*cosb=(cos(a+b)+cos(a-b)/2 sina*sinb=-(cos(a+b)-cos(a-b)/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin(x+y)/2)*cos(x-y)/2) sinx-siny=2cos(x+y)/2)*sin(x-y)/2) cosx+cosy=2cos(x+y)/2)*cos(x-y)/2) cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2) 0度 sina=0,cosa=1,tana=030度 sina=1/2,cosa=3/2,tana=3/345度 sina=2/2,cosa=2/2,tana=160度 sina=3/2,cosa=1/2,tana=390度 sina=1,cosa=0,tana不存在120度 sina=3/2,cosa=-1/2,tana=-3150度 sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏盐城工学院招聘7人模拟试卷及参考答案详解1套
- 2025年福建省泉州市晋江市反邪教协会招聘1人考前自测高频考点模拟试题有完整答案详解
- 2025广东佛山市南海区桂城街道招聘辅警体能测评、笔试模拟试卷及答案详解(全优)
- 2025内蒙古通辽开鲁县教体系统招聘206人考前自测高频考点模拟试题及答案详解(有一套)
- 2025湖南湘潭市岳塘区事业单位急需紧缺专业人才引进55人考前自测高频考点模拟试题及一套参考答案详解
- 三年级下册道德与法治教学设计-7请到我的家乡来 第一课时 人教部编版
- 2025广告传媒公司合作协议范本
- 2025版政府间合作协议范本
- 2025专业版委托代理协议
- 安顺消防安全培训直播课件
- 中医全科课件下载
- T/CAAM 0004-2023针刺临床试验中假针刺对照设置与报告指南
- 拒绝烟草诱惑向“吸烟”说不!课件-2024-2025学年高二下学期世界无烟日主题班会
- 4《少给父母添麻烦》公开课一等奖创新教案(第二课时)
- T-JLJY 01 -2023 幼儿园教育装备配置规范
- 《SLT631-2025水利水电工程单元工程施工质量验收标准》知识培训
- 马拉松志愿者培训
- 企业信息化标准规范-全面剖析
- 临床微生物学检验 2细菌形态学检查、培养和分离技术 学习资料
- 防高处坠落 物体打击专项施工方案
- 小学少先队数字化学习计划2024-2025
评论
0/150
提交评论