函数模型的应用实例_第1页
函数模型的应用实例_第2页
函数模型的应用实例_第3页
函数模型的应用实例_第4页
函数模型的应用实例_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2.2函数模型的应用实例,一、新课引入,到目前为止,我们已经学习了哪些常用函数?,一次函数,二次函数,指数函数,对数函数,幂函数,(a0),大家首先来看一个例子,邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克的超出部分按每千克3元收费,邮费与邮寄包裹重量的函数关系式为_,f(x),从中可以知道,函数与现实世界有着紧密的联系,有着广泛应用的,那么我们能否通过更多的实例来感受它们的应用呢?若能的话,那么如何在实际问题中建立函数模型呢?,例3:一辆汽车在某段路程中的行驶速度与时间的关系如图:,50,80,65,75,90,(1)求图中阴影部分的面积,并说明所求面积的实际含义。,(2)假设这辆汽车的里程表在行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图像。,t,t,.,.,.,.,.,.,解决应用题的一般程序是:审题:弄清题意,分清条件和结论,理顺数量关系;建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;解模:求解数学模型,得出数学结论;还原:将用数学知识和方法得出的结论,还原为实际问题的意义,下面是19501959年我国的人口数据资料:,(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;,(2)如果按表中数据的增长趋势,大约在哪一年我国的人口达到13亿?,于是,19511959年期间,我国人口的年平均增长率为,由上图可以看出,所得模型与19501959年的实际人中数据基本吻合.,(2)将y=1300000代入y=55196e0.0221t,由计算机可得:,t38.76,这就是说按照这个增长趋势,那么大约在1950年后的第39年(即1989年),我国的人口就已经达到13亿。,解模,验模,用模,例5某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:,请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?,分析:由表中信息可知销售单价每增加1元,日均销售量就减少40桶销售利润怎样计算较好?,解:设在进价基础上增加x元后,日均经营利润为y元,则有日均销售量为,而,有最大值,只需将销售单价定为11.5元,就可获得最大的利润。,解模,验模,用模,选模,例6某地区不同身高的未成年男性的体重平均值如表,(1)根据表所提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.,(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?,给出数据建模的程序,收集数据,画散点图,选择模型,求解模型,检验模型,使用模型,不符合,注意点:1在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求2在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化3对于建立的各种数学模型,要能够模型识别,充分利用数学方法加以解决,并能积累一定数量的典型的函数模型,这是顺利解决实际问题的重要资本,小结,本节内容主要是运用所学的函数知识去解决实际问题,要求学生掌握函数应用的基本方法和步骤函数的应用问题是高考中的热点内容,必须下功夫练好基本功本节涉及的函数模型有:一次函数、二次函数、分段函数及较简单的指数函数和对数函数其中,最重要的是二次函数模型,作业,P107B组:1.2,1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:,要使每天收入达到最高,每间定价应为(),A.20元B.18元C.16元D.14元,2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少20个,为了取得最大利润,每个售价应定为(),A.95元B.100元C.105元D.110元,C,A,课后练习,3某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20,要使水中杂质减少到原来的5以下,则至少需要过滤的次数为()(参考数据lg20.3010,lg30.4771)A5B10C14D15

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论