已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
角平分线的性质,唐县镇中心学校:主讲,第一课时,不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片,看看折痕与这个角有何关系?,(对折),情境问题,1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?,情境问题,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,2、证明:在ACD和ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)ACDACB(SSS)CAD=CAB(全等三角形的对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C,E,分别以,为圆心大于的长为半径作弧两弧在AOB的内部交于,如何用尺规作角的平分线?,A,作法:,以为圆心,适当长为半径作弧,交于,交于,作射线OC,则射线即为所求,1平分平角AOB2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。,实践应用(1),探究角平分线的性质,(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,证明:OC平分AOB(已知)1=2(角平分线的定义)PDOA,PEOB(已知)PDO=PEO(垂直的定义)在PDO和PEO中PDO=PEO(已证)1=2(已证)OP=OP(公共边)PDOPEO(AAS)PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E求证:PD=PE,探究角平分线的性质,(3)验证猜想,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?(几何语言),O,A,B,E,D,思考:,如图所示OC是AOB的平分线,P是OC上任意一点,问PE=PD?为什么?,C,P,PD,PE没有垂直OA,OB,它们不是角平分线上任一点这个角两边的距离,所以不一定相等直,如图:在ABC中,C=90AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDFRtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE(因为角的平分线的性质)再用HL证明.,试试自己写证明。你一定行!,从这节课中你有哪些收获?,小结:,1:画一个已知角的角平分线;(注意作图痕迹和几何语言的表达),及画一条已知直线的垂线;,2:角平分线的性质:,角的平分线上的点到角的两边的距离相等3:角平分线的性质的应用,1.如图,OC是AOB的平分线,PD=PE,PDOA,PEOB,2.如图,在ABC中,ACBC,AD为BAC的平分线,DEAB,AB7,AC3,求BE的长。,E,D,C,B,A,3.在RtABC中,BD平分ABC,DEAB于E,则:图中相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南安阳公安机关留置看护辅警招聘46人备考题库含答案详解(综合题)
- 2025广东广州市黄埔区萝岗街道综合发展中心招聘环卫工人备考题库附答案详解(满分必刷)
- 2025广东广州市黄埔区人民政府黄埔街道办事处党建组织员招聘1人备考题库带答案详解(完整版)
- 2026年度中国建设银行博士后科研工作站博士后研究人员招聘8人备考题库附答案详解(轻巧夺冠)
- 高层建筑节能与环保建设规范
- 个性化营养方案的健康数据决策支持模型
- 2025重庆永川区陈食街道招村(社区)专职干部后备人员备考题库及参考答案详解1套
- 个性化心理评估在干预方案制定中的应用
- 个性化成本管控方案
- 2026“梦想靠岸”招商银行南宁分行冬季校园招聘备考题库含答案详解ab卷
- 工程交接验收流程与注意事项
- 2025年1月辽宁省普通高中学业水平合格性考试数学试题+答案
- 卫生间改造施工组织方案
- 2025 高级经济师 工商管理 试题
- 2025年医务工作者岗位招聘面试参考题库及参考答案
- 城市轨道交通票务管理 城市轨道交通票务系统概述 课件演示模板
- 2025年云南交投集团下属云岭建设公司生产人员社会招聘(26人)笔试考试参考试题及答案解析
- 驾校土地租赁合同范本
- 公司生产主管述职报告
- 浓密机培训课件
- 医疗器械质量记录管理制度
评论
0/150
提交评论