



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(经典)最全余弦定理的10种证明方法王彦文 青铜峡一中一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在中,已知,则有,.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在中,已知,及角,求证:.证法一:如图1,在中,由可得:即,.证法二:本方法要注意对进行讨论.(1)当是直角时,由知结论成立.(2)当是锐角时,如图2-1,过点作,交于点,则在中,. 从而,.在中,由勾股定理可得: 即,. 说明:图2-1中只对是锐角时符合,而还可以是直角或钝角.若是直角,图中的点就与点重合;若是钝角,图中的点就在的延长线上.(3)当是钝角时,如图2-2,过点作,交延长线于点,则在中,. 从而,.在中,由勾股定理可得: 即,.综上(1),(2),(3)可知,均有成立.证法三:过点作,交于点,则在中,.在中,.由可得:整理可得.证法四:在中,由正弦定理可得.从而有,. 将带入,整理可得.将,平方相加可得.即,.证法五:建立平面直角坐标系(如图4),则由题意可得点,再由两点间距离公式可得.即,.证法六:在中,由正弦定理可得,.于是,即,结论成立.证法七:在中,由正弦定理可得,.于是, 由于,因此. 这,显然成立.即,结论成立.证法八:如图5,以点为圆心,以为半径作,直线与交于点,延长交于,延长交于.则由作图过程知,故.由相交弦定理可得:,即,整理可得:.证法九:如图6,过作,交的外接圆于,则,.分别过作的垂线,垂足分别为,则,故.由托勒密定理可得,即,.整理可得:.证法十:由图7-1和图7-2可得,整理可得:.余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆荣昌县2025年上半年事业单位公开遴选试题含答案分析
- 浙江省文成县2025年上半年事业单位公开遴选试题含答案分析
- 云南省孟连傣族拉祜族佤族自治县2025年上半年事业单位公开遴选试题含答案分析
- 河北省围场满族蒙古族自治县2025年上半年公开招聘城市协管员试题含答案分析
- 河北省隆化县2025年上半年公开招聘村务工作者试题含答案分析
- 2025版教师薪酬福利体系优化聘用合同
- 2025年度汽车租赁绿色出行推广与服务合同
- 2025版城市更新改造项目施工合同范本组成下载
- 2025年度应急通讯对讲机租赁协议范本
- 2025年度影视拍摄车牌租赁服务协议
- 2025-2026学年人教版(2024)初中生物八年级上册教学计划及进度表
- (高清版)DB11∕T 1455-2025 电动汽车充电基础设施规划设计标准
- 2025年辅警招聘考试真题(含答案)
- 电化学储能电站设计标准
- 消除母婴三病传播培训课件
- 附件6工贸高风险企业高危领域较大以上安全风险管控清单
- ASTM-D3359-(附著力测试标准)-中文版
- iatf16949-2016标准与程序文件对照表
- 医院学术委员会及工作职责制度的通知
- 煤矿物料装车、捆绑管理规定
- CPK计算表格EXCEL模板
评论
0/150
提交评论