




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新定义问题1.(18海淀一模8)如图1,矩形的一条边长为,周长的一半为.定义为这个矩形的坐标. 如图2,在平面直角坐标系中,直线将第一象限划分成4个区域. 已知矩形1的坐标的对应点落在如图所示的双曲线上,矩形2的坐标的对应点落在区域中. 图1 图2则下面叙述中正确的是( )A. 点的横坐标有可能大于3B. 矩形1是正方形时,点位于区域 C. 当点沿双曲线向上移动时,矩形1的面积减小D. 当点位于区域时,矩形1可能和矩形2全等2.(18海淀一模15)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦阿基米德折弦定理:如图1,和组成圆的折弦,是弧的中点,于,则如图2,中,是上一点,作交的外接圆于,连接,则=_ 3.(18平谷一模28)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”. (1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为_;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)O的半径为,点P的坐标为(3,m) .若在O上存在一点Q ,使得以QP为边的“坐标菱形”为正方形,求m的取值范围2. (18延庆一模28)平面直角坐标系xOy中,点,与,如果满足,其中,则称点A与点B互为反等点已知:点C(3,4)(1)下列各点中, 与点C互为反等点;D(3,4),E(3,4),F(3,4)(2)已知点G(5,4),连接线段CG,若在线段CG上存在两点P,Q互为反等点,求点P的横坐标的取值范围;(3)已知O的半径为r,若O与(2)中线段CG的两个交点互为反等点,求r的取值范围3.(18石景山一模28)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”如图为点A,B 的“确定圆”的示意图(1)已知点A的坐标为,点的坐标为,则点A,B的“确定圆”的面积为_;(2)已知点A的坐标为,若直线上只存在一个点B,使得点A,B的“确定圆”的面积为,求点B的坐标;(3)已知点A在以为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于,直接写出的取值范围4.(18房山一模28)在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知O的半径为1. 在点E(1,1),F(,),M(2,2)中,O的“梦之点”为 ;若点P位于O内部,且为双曲线(k0)的“梦之点”,求k的取值范围.(2)已知点C的坐标为(1,t),C的半径为,若在C上存在“梦之点”P,直接写出t的取值范围.(3)若二次函数的图象上存在两个“梦之点”,且,求二次函数图象的顶点坐标. 5.(18西城一模28)对于平面内的和外一点,给出如下定义:若过点的直线与存在公共点,记为点,设,则称点(或点)是的“相关依附点”,特别地,当点和点重合时,规定,(或)已知在平面直角坐标系中,的半径为(1)如图,当时,若是的“相关依附点”,则的值为_是否为的“相关依附点”答:_(填“是”或“否”)(2)若上存在“相关依附点”点,当,直线与相切时,求的值当时,求的取值范围(3)若存在的值使得直线与有公共点,且公共点是的“相关依附点”,直接写出的取值范围6.(18怀柔一模28)P是C外一点,若射线PC交C于点A,B两点,则给出如下定义:若0PAPB3,则点P为C的“特征点”(1)当O的半径为1时在点P1(,0)、P2(0,2)、P3(4,0)中,O的“特征点”是 ;点P在直线y=x+b上,若点P为O的“特征点”求b的取值范围;(2)C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是C的“特征点”,直接写出点C的横坐标的取值范围7.(18海淀一模28)在平面直角坐标系中,对于点和,给出如下定义:若上存在一点不与重合,使点关于直线的对称点在上,则称为的反射点下图为的反射点的示意图(1)已知点的坐标为,的半径为,在点,中,的反射点是_;点在直线上,若为的反射点,求点的横坐标的取值范围;(2)的圆心在轴上,半径为,轴上存在点是的反射点,直接写出圆心的横坐标的取值范围8.(18朝阳一模28)对于平面直角坐标系中点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点(1)当t=3时,在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是 ;在直线y=2x+b上存在线段AB的伴随点M、N, 且MN,求b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围9.(18东城一模28)给出如下定义:对于O的弦MN和O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当MPNMON=180时,则称点 P是线段MN关于点O的关联点图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,O的半径为1.(1)如图2, ,.在A(1,0),B(1,1),三点中,是线段MN关于点O的关联点的是 ;(2)如图3, M(0,1),N,点D是线段 MN关于点O的关联点.MDN的大小为 ;在第一象限内有一点E,点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标; 点F在直线上,当MFNMDN时,求点F横坐标xF的取值范围10.(18丰台一模28)对于平面直角坐标系xOy中的点M和图形,给出如下定义:点P为图形上一点,点Q为图形上一点,当点M是线段PQ的中点时,称点M是图形,的“中立点”如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为已知,点A(-3,0),B(0,4),C(4,0)(1)连接BC,在点D(,0),E(0,1),F(0,)中,可以成为点A和线段BC的“中立点”的是_;(2)已知点G(3,0),G的半径为2如果直线y = - x + 1上存在点K可以成为点A和G的“中立点”,求点K的坐标;(3)以点C为圆心,半径为2作圆点N为直线y = 2x + 4上的一点,如果存在点N,使得轴上的一点可以成为点N与C的“中立点”,直接写出点N的横坐标的取值范围11.(18门头沟一模28)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的 “和谐点”.(1)已知点A的坐标为,若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.(2)O的半径为,点D为点E、F的“和谐点”,若使得DEF与O有交点,画出示意图直接写出半径的取值范围.备用图1 备用图2 12.(18大兴一模28)在平面直角坐标系中,过轴上一点作平行于轴的直线交某函数图象于点,点是轴上一动点,连接,过点作的垂线交轴于点(在线段上,不与点重合),则称为点,,的“平横纵直角”.图1为点,的“平横纵直角”的示意图. 图113.如图2,在平面直角坐标系中,已知二次函数图象与轴交于点,与轴分别交于点(,0),(12,0). 若过点F作平行于轴的直线交抛物线于点.(1)点的横坐标为 ; (2)已知一直角为点的“平横纵直角”,若在线段上存在不同的两点、,使相应的点、都与点重合,试求的取值范围; (3)设抛物线的顶点为点,连接与交于点,当时,求的取值范围图213.(18顺义一模28)如图1,对于平面内的点P和两条曲线、给出如下定义:若从点P任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P为“曲心”例如:如图2,以点O为圆心,半径分别为、(都是常数)的两个同心圆、,从点O任意引出一条射线分别与两圆交于点M、N,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为O(1)在平面直角坐标系xOy中,直线与抛物线、分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使O与直线BC相切?若存在,求出k的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“”改为“”,其他条件不变,当存在O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式14.(18通州一模).在平面直角坐标系中有不重合的两个点与.若,为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与或轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点与点之间的“直距”.例如在下图中,点,则该直角三角形的两条直角边长为1和2,此时点与点之间的“直距”.特别地,当与某条坐标轴平行(或重合)时,线段的长即为点与点之间的“直距”.(1)已知为坐标原点,点,则,; 点在直线上,请你求出的最小值; (2)点是以原点为圆心,1为半径的圆上的一个动点;点是直线上一动点.请你直接写出点与点之间“直距”的最小值. 15.(18燕山一模27)如图,抛物线的顶点为M ,直线y=m与抛物线交于点A,B ,若AMB为等腰直角三角形,我们把抛物线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西柳州市融水中学2026届化学高一上期中考试试题含解析
- 江西省崇仁县第二中学2026届高三化学第一学期期中学业质量监测试题含解析
- 山东省微山县第一中学2026届高二化学第一学期期末经典模拟试题含答案
- 2026届河北邯郸化学高三上期末调研模拟试题含解析
- 2026届山东省平邑县曾子学校高一化学第一学期期中学业水平测试试题含解析
- 2026届四川省遂宁市射洪县化学高二上期中复习检测模拟试题含解析
- 2026届江西省南昌市化学高二上期中教学质量检测模拟试题含解析
- 物流企业仓储管理与信息系统应用
- 幼儿园饮食观察与培养习惯记录
- 学校学生管理规章更新方案
- 电信研发工程师L1认证培训考试复习题库(含答案)
- 空气源热泵施工组织设计
- 非战争军事行动中的后勤保障工作
- 金蝶K3供应链操作手册
- 高泌乳素症患者的护理
- 中国慢性阻塞性肺疾病基层诊疗指南(2024年)解读
- 电缆中间接头防火整改方案
- 2025届新高考数学一二轮复习备考建议与做法 课件
- 合作试验协议
- 全国高中生物奥林匹克竞赛试题
- 配电房安全管理培训
评论
0/150
提交评论