




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录1:外文翻译噪声住房优化的数值和实验研究减少轴向柱塞泵摘要 本文提出了一种通过改变壳体结构来减少轴向柱塞泵噪声的方法,结合数值和实验方法。建立了壳体和盖板的有限元模型,并组装在一起。有限元模型使用实验模态分析进行验证和更新。计算组件的频率响应函数,并添加壳体内表面中的壳单元。确定壳单元厚度对频率响应函数的影响。进行拓扑优化,以减少频率响应函数和质量的增加。原型泵制造和组装。进行不同的实验测量,包括测量振动和泵周围声压级的分布。结果表明,通过使用优化的外壳,减轻了振动和噪音。特别是在250 bar的排放压力下,平均声压级降低了约2 dB(A),二次谐波的声压级别显着减少。这里提出的方法也可以用于其他种类的排量泵。 1.简介 轴向柱塞泵由于能够根据实际要求调整其位移,因此广泛应用于液压油动力系统。 然而,它们的噪声水平高于其他类型的位移泵,它们是液压系统中的主要噪声源。 为了满足三重奏法律规则的要求,液压泵的噪音必须减小1,特别是轴向柱塞泵。 提出了一种用于对齿轮泵的振动声学特性进行建模的方法1,有助于降低液压泵的噪音。 轴向柱塞泵产生的噪音分为流体噪声,结构噪声和空气噪声。流动波纹是流体噪声的来源;当流动波动与系统阻抗相互作用时,它会导致软管,阀门和执行器的振动,并且提出了一种测量叶片泵压力波动的方法2。内部激励力和力矩是结构噪声的来源;它们会引起泵的振动。阀板是影响噪声源产生的关键部分3,在泵送动力学建模中考虑了惯性效应。比较了具有不同种类的槽几何形状的阀板4,表明具有三角槽几何形状的阀板对工作条件不太敏感。优化了这种阀板的结构参数(槽长,宽度和高度),以减少基于泵模型的流动波动5,6。该方法不能同时考虑流体噪声和结构噪声源。为了解释流体噪声和结构噪声,采用遗传优化方法7。采用类似的优化方法,找到最优的交叉角,以降低噪声对位移的敏感度8。除了使用的被动方式之外,还采用了几种主动方法来控制流体噪声和结构噪声源,其中高阻尼止回阀9和可变换向阀10被发现是在不同的工作条件下有效。这些调查集中在减少噪声源。 降低噪声的另一种方法是改变传输路径11。 对于轴向柱塞泵,早期的研究表明,通过添加加强肋可以减少噪音12,13,改变了房屋的安装和形状14。然而,这些修改或多或少地通过试验和 错误方法。 即使建立了轴向柱塞泵的振动声学模型,这些模型仅用于在设计阶段评估其振动和噪声。 很难提供如何修改房屋的信息。 此外,与汽车行业相比,更安静的组件的发展落后于流体动力行业。在汽车行业,拓扑,尺寸,形状和地形优化方法已被采用,以找到获得更轻和更安静的机器的最佳结构 15,16。预计流体动力工业可以利用这些技术来推动其进步。 本研究的目的是:(1)建立模型分析的住房和覆盖有限元模型; (2)使用基于模态保证标准的实验模态分析验证和更新有限元模型; (3)开发拓扑优化方法,优化房屋结构,降低频率响应功能; (4)使用不同的实验测量来评估原始和优化泵之间的振动和噪声差异,包括泵周围的振动测量和声压级测量。2. 元素分析 轴向柱塞泵是具有九个活塞的可变排量斜盘式。 泵的额定压力为350 bar,排量为250 cm 3 / r,额定转速为1500 r / min。 在本节中,建立了壳体和盖板的有限元模型,并将其组装在一起。进行有限元模态分析,并进行实验模态分析,以验证和更新有限元模型。 更新的模型将用于第3节中频率响应函数的计算。2.1 有限元模态分析 轴向柱塞泵的壳体和盖子是影响振动传播和噪声发射的主要部件。 建立了有限元模型,用于执行有限元模态分析(FEMA)。 轴向柱塞泵有许多润滑界面。 在这些接口中,拖鞋/斜盘接口,活塞/气缸接口和气缸/阀板接口是最主要的。 尽管使用不同的方法对这些接口进行有限元分析建模,但结果并不好,难以正确地进行分析17。 由于这些原因,这些部分不包括在内。 这不仅可以减少计算时间,而且可以用于识别外壳对轴向柱塞泵的振动和噪声的实际影响。 有限元模型如图1所示。四面体元件用于对外壳和盖板进行建模,共有139,432(92,030 + 47,402)个四面体元件。壳体和盖子之间的螺栓由与实际螺栓(M18)具有相同半径的一维梁元件建模。梁元件使用具有三个平移自由度(Dofs)约束的刚性蜘蛛元件(rbe2)连接到周围元件。外壳和盖由可锻铸铁制成。推荐的材料特性为:q = 7010 kg / m 3,l = 0.274,E = 1.61? 10 11 N / m 2。在初始阶段,这些属性用于确定外壳和盖板的模态特性。使用这些初始设置的模拟前10个模态频率列于表1中。然后,将进行模态保证标准分析(MACA),以分析模拟和测量的模态特征值之间的校正。后来,这些属性将被更新,以改善纠正。当属性成功更新时,将执行频率响应功能分析。它们的结果在拓扑优化中用作约束,如第3节所述。2.2 实验模态分析 使用冲击试验进行实验模态分析(EMA)。 试验台的原理图如图1所示。 2.在壳体表面上构造了74点(编号1-74),压电加速度计(型号4507-B-001,BrelKjr)连接到点59.锤被移动到每个测量点 激励壳体,并且冲击锤中的集成内力传感器提供测量的输入激励。 连接到泵的加速度计测量加速度,并且加速度计提供动态响应。 测量的输入和输出产生系统传输功能。 当EMA完成时,可以获得模态频率和模态。 EMA需要两个程序,数据采集和数据分析。 数据采集设备为LAN-XI 3050,数据分析在PULSE LabShop 14.1和MEscopeVES中进行。 在数据采集中,输入数据通过线性平均五个测量结果(类型7753,Brel和Kjr)获得。 使用铝锤尖,这是较硬的并且允许更高的可测量的频率范围。 此外,使用指数衰减窗口来最小化泄漏的失真效应。之后,在MEscopeVES中进一步解释数据。 测量的前十个模态频率也列在表1中。2.3 模态保证标准分析 当FEMA和EMA都完成时,可以进行模态保证标准分析(MACA),以分析模拟和测量模态特征之间的校正。 模态保证标准矩阵建立在模式i和j上,使用模式i的测试模态向量,以及方程式j给出的模式j的有限元模态向量w j FE。(1):其中/呈现复共轭。 MAC ij的值大于0,小于1.如果两个向量是正交的,则MAC ij = 0,并且MAC ij = 1,如果它们相等,则相应的测试和有限元模式应该具有高MAC值。实际上,如果MAC ij 0.8,则两个向量被认为是非常好的相关,如果MAC ij 0.7,则两个向量被认为是可接受的18。在本研究中,测试模态向量是用于验证有限元模型精度和更新材料属性(q,l和E)的参考,以获得更高的MAC值。前十个固有频率的初始MAC值列在表1中。该表显示了模拟和测量模式形状之间的最高模式对。这是通过跟踪最高MAC值(测量模式是固定的,有限元模式是变化的)来实现的。使用这种技术,没有呈现具有较小MAC值的其他模式对,这有助于在优化中定义目标函数以更新材料的属性。它显示使用初始设置,MAC值从0.3到0.6不等,这表明两个向量彼此不相关。因此,需要更新模型,如第2.4节所述。2.4 模型更新在MACA的基础上,需要更多的程序来更新模型,模态保证标准灵敏度分析(MACSA)和优化。 MACSA计算MAC值对材料属性的敏感度,并提供有关明确影响MAC值的最大因素的信息。在优化过程中,应定义设计变量和目标。在这项研究中,设计变量是材料属性(q,l和E),目标是最大化MAC值,并最小化测量模型和模拟模型之间的频率差异。使用顺序二次编程算法(集成在LMS virtual.lab中)进行优化,并使用分析方法计算梯度。进行了九个实验设计。优化过程中材料特性的变化如图1所示。 3.更新的材料性质是:q = 7465.2kg / m 3,l = 0.247,E = 1.53? 10 11 N / m 2。与原始设定相比,密度增加约6.5,泊松比下降约9.9,杨氏模量下降约5.0。这表示MAC值对材料属性非常敏感。使用更新的材料属性计算的前十个模式频率,频率误差和MAC值也列在表1中。它显示了模拟和测量模型之间的相关性有很大的改善。更新的MAC值大于0.70,小于0.90。尽管第二模式频率误差(3.3),但大多数频率误差小于3。考虑到测试模式形状也受到误差的影响,上述结果被认为是足够的精度。为了进一步改善有限元模型,希望通过不太简化和使用更小的元件尺寸(更大数量的元件)来提高四面体元件的网格质量。然而,实际上,考虑到预处理时间和计算时间的增加,它没有任何优势。结果还表明,使用更新的材料属性的更新模型使用推荐的材料属性比原始模型更精确,并且对以下部分中的有限元分析给出了置信度。3.优化使用更新的有限元模型,进行频率响应函数分析,以调查壳体和盖组件的动力学。为了降低频率响应功能,外壳元件被添加到外壳的内表面。定义了不同厚度的壳单元以调查其对频率响应函数的影响。将显示功率对重量的密度有很大的降低。因此,拓扑优化方法用于优化壳单元,通过约束频率响应函数来减小质量。3.1频率响应函数分析在拓扑优化之前,进行频率响应分析,以研究增加内表面厚度对壳体和盖组件动力学的影响。为了实现这个目标,构造壳单元,这些元件通过使用刚性的蜘蛛元件(rbe2)连接到壳体中的相应元件。这使得可以为壳单元定义不同的厚度。缺点是整个壳单元由相同的属性定义,同样的厚度分配给整个外壳。在有限元模型中如图1所示。如图1所示,激励点定义在节点36183(轴承中心),使用三个平移Dofs约束的插值蜘蛛元素(rbe3)与周围元素连接。需要几个程序来计算频率响应函数。首先,在x方向上的节点36183a处具有1000N的恒定幅度的频率变化(0-5kHz)激励力被定义如图1所示。在实际操作条件下,轴承力沿着x和y方向都有分量。但是为了简单起见,只有沿x方向的力被定义为激励。第二,2.5的值被定义为全局模态阻尼。第三,规定了在0-6kHz范围内的每个谐振频率的0.2和0.8的两个激励频率。最后,定义节点9993处的节点位移的响应(图1)。首先研究壳单元厚度对频率响应函数的影响。在三种不同厚度(0,10和20mm)处获得的频率响应函数如图1所示。这表明频率响应函数随着厚度的增加而减小。最大的值出现在大约370Hz,这是组件的模态频率。具体来说,FRF从3.6? 105mm / N3.2? 105mm / N时,当壳厚度增加到20mm时,实现了10以上的压下率。应该注意的是,这种模态频率与第2节所述的模态频率不同,其中第一模态频率为890.2Hz。它还表明,第一模态频率随着壳厚度的增加而增加(368-376Hz)。此外,当频率低于3kHz时,与频率大于3kHz的频率相比,FRF的降低更为明显。在这种分析中,加入的壳元素的总面积为约0.1m 2,如果壳元素的厚度从0增加到10mm,并且20mm,则质量增加约为7.6kg和15.2kg。相对于约77.3公斤的房屋重量,增幅约为10和20。通常,这是不能接受的,因为重量的增加太多,因此在功率重量密度方面损失太多。为此,一个拓扑采用优化方法来优化壳单元的厚度。优化结果将为如何优化住房提供有用的指导:最大程度上减少响应,同时增加最小重量 旋转机械的谐波。 当活塞数为9,速度为1490 r / min(实际为14905 r / min)时,泵的基频为223 Hz。 显然振动随着压力水平的增加而增加。 二次谐波振动对于原始和优化的泵都是最大的。 在大多数情况下,第一和第五次谐波的振动是第二和第三大。 前十次谐波(0-2.5 kHz)的振动大于高次谐波(2.5-5 kHz)时的振动。 相比之下,可以发现通过在多个谐波下使用优化的壳体来减小振动。 具体地说,可以清楚地看到第二和第五谐波(447和1115Hz)的振动的减小。 此外,平均振动速度从约7? 103m / s6? 如图2所示,在250巴下为10-3m / s。11。4.3 声压级测量几点振动的比较不足以证明优化泵对噪声发射的影响。因此,进一步测量声压级。 为了测量泵周围声压级的分布,需要在测试泵周围建立几个假想曲面。 在这种情况下,如图1所示的四个测量表面(左,前,右和上)。 如图12所示,假设底表面和后表面都是刚性反射表面。 实际上,底面不完全刚性; 它吸收了一些声能。假设的平行六面体的大小是800? 1000? 800mm(长高宽),测量段尺寸为100? 100 mm,得到304(80?3 + 64)个测量段。 对于每个段,测量时间为10 ms,这允许每个段的平均时间为五。 通过参考ISO 9614-1 19和ISO 16902-1 20来构建声压级测量的测量设置,但是应注意测量不能完全满足两个标准的要求 ,因为条件有限,如测量室的尺寸和声学处理。 然而,用于比较测量准确度等级的方法是可以接受和有用的。 在大多数情况下,声压级用于呈现噪音,而不是使用声压。 声压级由以下公式计算: 其中p 0是参考声压。为了同时测量泵周围的声压级的分布,需要许多麦克风阵列。然而,在本研究中它并没有被用于其高成本。因此,声压级按顺序测量,并且使用具有两个麦克风的声强探测器(型号3599,BrelKjr)测量(4197型, BrelKjr)。两个麦克风之间的距离为12 mm,可测量频率为0.25-5000 Hz。该过程描述如下。首先,在每个段测量声压级,然后当前段的测量结束时,测量进行到下一段。然后,当一个表面的声压级的测量结束时,移动到下一个表面。由于这些表面的全部测量完成,所以可以计算测量面的平均声压级,并且可以计算出频谱。此外,也可以计算一个表面的平均声压级。在50和150巴的排放压力下,原始泵周围声压级的分布如图1和图2所示。 13和14。图图15和16分别示出了优化泵的声压级的分布。首先,可以看出,当排出压力增加时,声压级增加。这是因为如图1所示,在较大的排出压力下振动速度较大。 10(忽略流体噪声源的影响)。其次,不同测量段的声压级相差很大。在图如图13所示,总声压级在左表面和右表面上从约85至95dB(A),前表面上为83至93 dB(A),上表面为83至91 dB(A)。类似的现象可以在图1和图2中看到。 14-16。这表明通过测量几个点的声压级来评估噪声水平是不够的。因此,本研究中使用平均声压级进行比较。平均声压级通过对所有选定测量段的声压级求平均值来计算。表3显示了在三种不同排放压力(50,150和250巴)下原始和优化泵的平均声压级。第三,优化泵比原泵更安静。在50巴时,平均声压级几乎相同(89.4和89.1 dB(A),平均声压级从95.9降低到94.1 dB(A) 在150巴时,在250巴时减少超过2 dB(A)(98.6和96.4 dB(A)。注意到平均声压级通常由最大值(在这种情况下为二次谐波,如图17所示)确定。因此,250巴下的声压级的分布不被比较。相反,二次谐波处的声压级的分布将在图1和图2中给出。 19和20。 通过观察表3,似乎每个表面的平均声压级别都不能全部使用优化的外壳来减少。在50巴时,左表面和前表面的平均声压级减小,而在右上表面上的声压级较大。在150 bar时,前,右和上表面的平均声压级别都会降低。在250巴时,它们在前表面,左右表面上减少。这可以通过如图1和2所示的声压级的分布的比较来解释。这表明测量段具有较高声压的量当使用优化的泵时,在50巴的左前表面和150巴的前,右和上表面上的水平都较小。此外,原始和优化泵的四个测量表面的平均声压级的频谱如图1所示。 17在三种不同的压力(50,150和250巴)下,平均声压级也如图1所示。图片清楚地表明,声压级别降低,平均声压级降低约1-2dB(A)。应注意平均振动速度和平均声压级小于其在二次谐波下的振幅。在所有情况下,二次谐波(447Hz)的平均声压级最大,与振动谱一致,如图1所示。因为总的平均声压级通常由它们在频域中的最大值来确定。因此,有必要检查二次谐波处的声压级的分布。由于已经确定在250巴的排放压力下平均声压级最大降低。比较这个压力下声压级的分布是比较好的,因为差异可以看得更清楚。在左,前,右和上测量表面(250巴)上的二次谐波(447Hz)处的声压级示于图1和图2。在前表面,平均声压级从99.0降低到94.7dB(A)。可以看出,对于原始泵,声压级在大于1/3的测量段上的声压级大于97dB(A),而对于优化的声压级,只有大约两个声压级高于97dB(A)的测量段泵。它还显示,当使用优化的泵时,更多的测量段具有低于85dB(A)的声压级。左右表面观察结果相似。这些结果确定了优化的壳体对轴向柱塞泵的噪声发射的影响,并且表明通过使用优化的壳体来降低噪声。5.结论已经提出了一种方法来优化住房结构,结合数值和实验方法。模态保证标准分析表明,为了获得准确的模态结果,需要更新材料性质。拓扑优化方法能够找到加筋肋的最优布局。实验结果解决了优化的壳体对泵的振动和噪声水平的影响。通过使用优化的壳体结构,证明了在宽范围的压力水平下振动和噪声水平被降低。特别地,平均声压级在250巴的排放压力下降低约2dB(A)。本研究提供了一种有效和有用的方法,可用于降低轴向柱塞泵的噪声,此处提出的方法可用于其他种类的流体动力机械。该研究的局限性在于,优化区域在壳体的内表面上受到限制。因此,由于减小的振动,可以获得降低的噪音。在未来的研究中,将整个房屋和房屋覆盖作为优化目标将会更好,以便不仅要改变振动传播,还要改变噪声的发射。 承认该项目得到了中国国家基础研究计划(2014CB046403)和国家自然科学基金(51375431)的支持。作者想承认叶志华,怀怀军,平吴等Hilead液压有限公司其他工程师制造原型泵,并在振动和声压级测量中提供必要的助手。附录A.补充材料在线版本中可以找到与本文相关的补充数据,网址为/10.1016/j.apacoust.2016.03.022。References1 Mucchi E, Rivola A, Dalpiaz G. Modelling dynamic behaviour and noise generation in gear pumps: procedure and validation. Appl Acoust 2014;77:99111.2 Mucchi E, Cremonini G, Delvecchio S, et al. On the pressure ripple measurement in variable displacement vane pumps. J Fluid Eng Trans ASME 2013;135(9). 091103(11).3 Edge KA, Darling J. The pumping dynamics of swash plate piston pumps. J Dynam Syst Meas Control 1989;111(2):30712.4 Manring ND. Valve-plate design for an axial piston pump operating at low displacements. J Mech Des 2003;125(1):2005.5 Mandal NP, Saha R, Sanyal D. Theoretical simulation of ripples for different leading-side groove volumes. Proc IMechE, Part I: J Syst Control 2008;222(6):55770.6 Mandal NP, Saha R, Sanyal D. Effects of flow inertia modelling and valve-plategeometry on swash-plate axial-piston pump performance. Proc IMechE, Part I: J Syst Control 2012;226(4):45165.7 Seeniraj GK, Ivantysynova M. A multi-parameter multi-objective approach to reduce pump noise generation. Int J Fluid Power 2011;12(1):717.8 Johansson A, Andersson J, Palmberg J-O. Experimental verification of cross-angle for noise reduction in hydraulic piston pumps. Proc IMechE, Part I: J Syst Control2007;221(3):32130.9 Harrison A, Edge KA. Reduction of axial piston pump pressure ripple. ProcIMechE, Part I: J Syst Control 2000;214(1):5363.10 Nafz T, Murrenhoff H, Rudik R. Noise reduction of hydraulic systems by axial piston pumps with variable reversing valves. In: Proceedings of the 8th international fluid power conference, March 2628, 2012. Dresden, Germany. p. 112.11 Mao J, Hao Z, Jing G, et al. Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Appl Acoust 2013;74 (1):1509.12 Palmen A. Noise reduction of an axial piston pump by means of structural modification. Olhydraul Pneum 2004;48(4):111.13 Malaney D, Wang H, Beyer M. Experimental and numerical study on vibro-acoustic performance of axial piston pump. In: SAE 2005 noise and vibration conference and exhibition, May 1619, 2005. Michigan, USA. p. 18.14 Kunze T, Berneke S. Noise reduction at hydrostatic pumps by structure optimization and acoustic simulation. In: 5th International fluid power conference, March 2022, 2006. Aachen, Germany. p. 27588.15 Li C, Kim IY, Jeswiet J. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 2015;51(2):54764.16 Li C, Kim IY. Topology, size and shape optimization of an automotive cross car beam. Proc IMechE, Part D: J Automob Eng 2015;229(10):136178.17 Christian Schleihs, Murrenhoff H. Modal analysis simulation and validation of a hydraulic motor. In: Proceedings of the 9th JFPS international symposium on fluid power, October 2831, 2014. Matsue, Japan. p. 5829.18 Friswell MI, Mottershead JE. Finite element model updating in structural dynamics. Netherlands: Kluwer Academic Publishers; 1995.19 ISO 9614-1. Acousticsdetermination of sound power levels of noise sources using sound intensitypart 1: measurement at discrete points; 1993.20 ISO 16902-1. Hydraulic fluid powertest code for the determination of sound power levels using sound intensity techniques: engineering methodpart 1:pumps; 2003.附录2:外文原文Numerical and experimental studies on housing optimization for noisereduction of an axial piston pumpABSTRACT This paper presents a methodology to reduce the noise of an axial piston pump through modification of the housing structure, combined with both numerical and experimental methods. The finite element models of the housing and cover are established, and are assembled together. The finite element models are validated and updated using experimental modal analysis. The frequency response function of the assembly is calculated, and the shell element in the inner surfaces of the housing is added. The effects of the thickness of the shell element on the frequency response function are identified. A topology optimization is conducted for the purpose of reducing the frequency response function and the increase of mass. The prototype pump is manufactured and assembled. Different experimental measurements are carried out, including the measurement of the vibration and the distributions of the sound pressure levels around the pump. Results show that the vibration and noise are reduced by using the optimized housing.In particular, the average sound pressure level is reduced by about 2 dB(A) at the discharge pressure of 250 bar, and the sound pressure level at the second harmonic is reduced significantly. The method pro-posed here can also be used for other kinds of displacement pumps.1. Introduction Axial piston pumps are widely used in hydraulic fluid power systems due to their ability of adjusting their displacements to match the actual demands. However, their noise levels are higher than other kinds of displacement pumps, and they are the main noise sources in hydraulic systems. In order to meet the requirement of tricter legal rules,the noise from hydraulic pumps must be reduced 1, particularly the axial piston pumps. A methodology was pro-posed to model the vibro-acoustic characteristics of a gear pump1, and it is helpful in reducing the noise of hydraulic pumps. The noise generated by an axial piston pump is divided into fluid-borne noise, structure-borne noise and air borne noise. Flow ripple is the source of fluid-borne noise; it causes the vibration of the hoses, valves and actuators when flow ripple interacts with system impedances, and a method is proposed to measure the pressure ripple of a vane pump 2. Internal excitation forces and moments are the sources of structure-borne noise; they cause the vibration of the pump. Valve plate is the key part affecting the generation of noise sources 3, and the inertia effects were considered in modeling the pumping dynamics. Valve plates with different kinds of slot geometries were compared 4, demonstrating that the valve plate with triangular slot geometry is less sensitive to working conditions. Structure parameters (slot length,width and height) of this kind of valve plate are optimized to reduce the flow ripple based on a pump model 5,6. This method cannot consider fluid-borne noise and structure-borne noise sources simultaneously. In order to account for both fluid-borne noise and structure-borne noise, a genetic optimization method was used 7. Similar optimization method was employed to find the optimal cross-angle for reducing the sensitivity of noise to dis-placement 8. In addition to the passive methods used, several active methods are also used to control the fluid-borne noise and structure-borne noise sources, among which, the highly damped check valve 9 and variable reversing valves 10 are found to be effective at different working conditions. These investigations focus on reducing the noise sources. The other method to reduce the noise is to change the transmission paths 11. For axial piston pumps, early studies have demonstrated that the noise can be reduced by adding reinforce ribs12,13, changing the mounting and the shape of housing 14.However, these modifications are carried out more or less by trial and error method. Even though the vibro-acoustic models of axial piston pumps were established, these models are merely used to evaluate their vibration and noise at the design stage. It could hardly provide information on how to modify the housing. Besides, comparing to the automotive industry, the development of quieter components falls behind in fluid power industry.In the automotive industry, the topology, size, shape and topography optimization methods are already employed to find the optimal structure for obtaining lighter and quieter machines 15,16.It is expected that the fluid power industry could use these techniques to promote its advancement. The aim of this study includes: (1) build a finite element models of the housing and cover for the modal analysis; (2) validate and update the finite element model using experimental modal analysis based on modal assurance criterion; (3) develop a topology optimization methodology to optimize the housing structure for the purpose of reducing the frequency response function; (4) evaluate the differences of vibration and noise between the original and optimized pumps using different experimental measurements,including vibration measurement and sound pressure levels measurement around the pump.2. Finite element analysis The axial piston pump is of variable displacement swash plate type with nine pistons. The rated pressure of the pump is 350 bar, the displacement is 250 cm 3 /r, and the rated rotational speed is 1500 r/min. In this section, the finite element models of the housing and cover are built, and they are assembled together.The finite element modal analysis is performed, and experimental modal analysis is performed for the purpose of validating and updating the finite element model. The updated model will be used for the calculation of the frequency response function in Section 3.2.1. Finite element modal analysis The housing and cover in the axial piston pump are the main parts affecting the vibration transmission and noise emission. Their finite element models are established for performing the finite element modal analysis (FEMA). There are many lubrication interfaces in the axial piston pump. Among these interfaces, the slipper/swash-plate interfaces, piston/cylinder interfaces and cylinder/valve-plate interface are the most dominant. Even though different method is used to modeled these interfaces for the finite element analysis, the results are not good, making it difficult to perform the analysis correctly 17. For these reasons, these parts are not included. This is acceptable not only for reducing the computing time, but also for identifying the real effects of the housing on the vibration and noise of the axial piston pump. The finite element model is shown in Fig. 1. The tetrahedral element is used to model the housing and cover, there are totally 139,432 (92,030 + 47,402) tetrahedral elements. T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子开关生产考核试卷
- 租书服务的自助借还系统优化考核试卷
- 玉米加工过程中的能源管理策略考核试卷
- 商业广场节假日特色活动赞助商权益保障协议
- 新型环保材料企业首席质量官任期制劳动合同
- 商业综合体运营管理股权投资及合作协议
- 深度资源共享名义合伙合作协议
- 幼儿园招生宣传与市场拓展合同
- 代发租金补充协议
- 质量数据统计分析补充协议
- 医药职业道德课程课件
- 绳索救援技术培训内容
- 甘肃省天水监狱招聘警务辅助人员笔试真题2024
- 2025年农村商业银行招聘考试笔试试题(含答案)
- 医院财务笔试试题及答案
- 全国医师定期考核公共卫生考核试题500题-1
- 上饶城投笔试试题及答案
- 医院会计考核试题及答案
- 广东广州历年中考语文现代文阅读真题43篇(截至2024年)
- 产品三观:打造用户思维法则
- 2025年湖南湘投控股集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论