计量经济学·多元线性回归模型_第1页
计量经济学·多元线性回归模型_第2页
计量经济学·多元线性回归模型_第3页
计量经济学·多元线性回归模型_第4页
计量经济学·多元线性回归模型_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学多元线性回归模型应用作业19852014年中国GDP与进口、出口贸易总额的关系一、概述在当今市场上,一国的GDP与多个因素存在着紧密的联系,例如进口总额和出口总额等都是影响一国GDP的重要因素。本次将以中国19852014年GDP和进口总额、出口总额两个因素因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调贸易对GDP的重要性,从而促进国内生产总值的发展。二、模型构建过程变量的定义解释变量:X1进口贸易总额,X2出口贸易总额 被解释变量:Y国内生产总值建立计量经济模型:解释原油产量与进口贸易总额、出口贸易总额之间的关系。模型的数学形式设定GDP与两个解释变量相关关系模型,样本回归模型为:数据的收集该模型的构建过程中共有两个变量,分别是中国从19902006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示时间国内生产总值(亿元)出口总额(人民币亿元)进口总额(人民币亿元)1985年9039.9808.91257.81986年10308.81082.11498.31987年12102.214701614.21988年15101.11766.72055.11989年17090.319562199.91990年18774.32985.82574.31991年21895.53827.13398.71992年27068.34676.34443.31993年35524.35284.85986.21994年48459.610421.89960.11995年61129.812451.811048.11996年71572.312576.411557.41997年79429.515160.711806.51998年84883.715223.611626.11999年90187.716159.813736.52000年99776.320634.418638.82001年.422024.420159.22002年26947.924430.32003年.636287.934195.62004年.449103.346435.82005年.862648.154273.72006年.677597.263376.862007年.493563.673300.12008年.7.9479526.532009年.282029.6968618.372010年.8494699.32011年.5.56.392012年.32013年.8.4.52014年.7.66.84数据来源:国家统计局3、 模型的检验及结果的解释、评价(一)OLS法的检验相关系数:YX1X2Y10.670260.0628X10.6702610.46187X20.06280.461871线性图:估计参数:Dependent Variable: YMethod: Least SquaresDate: 12/14/15 Time: 14:47Sample: 1985 2014Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C3775.48769.0.025450.60232X1-0.511891.3585-0.944140.33828X25.1612.26052.83020.6243R-squared0.29319Mean dependent var.Adjusted R-squared0.83343S.D. dependent var.S.E. of regression35022.Akaike info criterion23.85Sum squared resid.29852Schwarz criterion24.471Log likelihood-354.74Hannan-Quinn criter.23.881F-statistic402.94Durbin-Watson stat0.58895Prob(F-statistic)7.3685e-21统计检验:(1) 拟合优度:从上表可以得到R2=0.29319,修正后的可决系数R2=0.83343,这说明模型对样本的拟合很好。(2) F检验:针对H0:(二)多重共线性的检验及修正 相关系数矩阵:X1X2X110.46187X20.461871辅助回归的R2值Dependent Variable: X1Method: Least SquaresDate: 12/14/15 Time: 15:13Sample: 1985 2014Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-236.36853.3-0.166180.28842X21.66710.2961675.4056.2624e-34R-squared0.34203Mean dependent var43924.Adjusted R-squared0.17566S.D. dependent var48106.S.E. of regression3414.9Akaike info criterion19.171Sum squared resid.Schwarz criterion19.918Log likelihood-285.56Hannan-Quinn criter.19.524F-statistic5729.6Durbin-Watson stat0.8975Prob(F-statistic)6.2711e-34因为方差扩大因子VIF大于等于10 为204.081,所以存在严重的多重共线性。对多重共线性的处理:Dependent Variable: LOG(Y)Method: Least SquaresDate: 12/14/15 Time: 15:35Sample: 1985 2014Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C3.92160.5516513.4349.0091e-14LOG(X1)0.469490.290661.43080.71318LOG(X2)0.756130.493982.8220.R-squared0.79073Mean dependent var11.848Adjusted R-squared0.07153S.D. dependent var1.0758S.E. of regression0.48128Akaike info criterion-0.39941Sum squared resid0.77368Schwarz criterion-0.77785Log likelihood15.991Hannan-Quinn criter.-0.36856F-statistic1087.Durbin-Watson stat0.15378Prob(F-statistic)1.3123e-26检验模型的异方差:(一) 图形法(goldfeld-Quandt检验)Dependent Variable: YMethod: Least SquaresDate: 12/14/15 Time: 16:04Sample: 1 11Included observations: 11VariableCoefficientStd. Errort-StatisticProb.C5479.41364.84.15090.X11.69051.96050.582160.35154X23.99731.50021.12250.75676R-squared0.89845Mean dependent var25135.Adjusted R-squared0.87306S.D. dependent var16782.S.E. of regression2310.2Akaike info criterion18.263Sum squared resid.Schwarz criterion18.4Log likelihood-99.944Hannan-Quinn criter.18.918F-statistic259.37Durbin-Watson stat2.2877Prob(F-statistic)5.8331e-08Dependent Variable: YMethod: Least SquaresDate: 12/14/15 Time: 16:05Sample: 20 30Included observations: 11VariableCoefficientStd. Errort-StatisticProb.C-.44951.-2.32220.X10.794812.08070.340770.60894X24.92332.30281.7920.23522R-squared0.85157Mean dependent var.Adjusted R-squared0.06446S.D. dependent var.S.E. of regression41690.Akaike info criterion24.962Sum squared resid.87124Schwarz criterion24.1Log likelihood-130.79Hannan-Quinn criter.24.618F-statistic74.82Durbin-Watson stat2.3539Prob(F-statistic)6.5899e-06(三)WHITE检验Heteroskedasticity Test: WhiteF-statistic8.8028Prob. F(5,24)0.Obs*R-squared18.681Prob. Chi-Square(5)0.Scaled explained SS24.745Prob. Chi-Square(5)0.Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/14/15 Time: 16:18Sample: 1 30Included observations: 30VariableCoefficientStd. Errort-StatisticProb.C-.-0.370530.63495X1-.-1.07430.56973X12-14.04617.546-0.652770.64741X1*X241.75239.0281.86580.50328X2.1.64410.X22-28.10922.863-1.56840.92591R-squared0.75604Mean dependent var.Adjusted R-squared0.83021S.D. dependent var.S.E. of regression.Akaike info criterion45.074Sum squared resid4.0382e+19Schwarz criterion45.318Log likelihood-669.12Hannan-Quinn criter.45.136F-statistic8.8028Durbin-Watson stat1.833Prob(F-statistic)0.所以存在异方差 异方差修正:自相关的检验与修正:一 图示检验法DW检验DW 0. 对样本容量为30、两个解释变量的模型,5%的显著水平,查DW统计表可知, =1.567 =1.284 模型中DW ,显然模型中有自相关。BG检验Breusch-Godfrey Serial Correlation LM Test:F-statistic19.24107Prob. F(2,25)0.0000Obs*R-squared18.18566Prob. Chi-Square(2)0.0001Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/20/15 Time: 20:42Sample: 1985 2014Included observations: 30Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb.C-3494.4895807.583-0.0.5528X13.1.2.0.0408X2-3.1.-2.0.0477RESID(-1)0.0.4.0.0001RESID(-2)0.0.0.0.5883R-squared0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论