第二讲--全等三角形的性质和判定_第1页
第二讲--全等三角形的性质和判定_第2页
第二讲--全等三角形的性质和判定_第3页
第二讲--全等三角形的性质和判定_第4页
第二讲--全等三角形的性质和判定_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二讲 全等三角形的性质与判定【知识梳理】1能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2全等三角形性质:全等三角形对应边相等,对应角相等;全等三角形对应高、角平分线、中线相等;全等三角形对应周长相等,面积相等;3全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.【例题精析】【例】如图,ABEFDC,ABC90,ABCD,那么图中有全等三角形( )BACDEFA5对B4对C3对D2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.【变式题组】1下列判断中错误的是( )A有两角和一边对应相等的两个三角形全等 B有两边和一角对应相等的两个三角形全等C有两边和其中一边上的中线对应相等的两个三角形全等D有一边对应相等的两个等边三角形全等AFCEDB2已知命题:如图,点A、D、B、E在同一条直线上,且ADBE,AFDE,则ABCDEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3已知线段AC与BD相交于点O, 连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).添加条件AD,OEFOFE,求证:ABDC;ABCDOFE分别将“AD”记为,“OEFOFE”记为,“ABDC”记为,添加、,以为结论构成命题1;添加条件、,以为结论构成命题2.命题1是_命题,命题2是_命题(选择“真”或“假”填入空格).【例】已知ABDC,AEDF,CFFB. 求证:AFDE.【解法指导】想证AFDE,首先要找出AF和DE所在的三角形.AF在AFB和AEF中,而DE在CDE和DEF中,因而只需证明ABFDCE或AEFDFE即可.然后再根据已知条件找出证明它们全等的条件.ACEFBD证明:FBCE FBEFCEEF,即BECF在ABE和DCF中, ABEDCF(SSS) BC在ABF和DCE中, ABFDCE AFDE【例】如图,ABCDEF,将ABC和DEF的顶点B和顶点E重合,把DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.当DEF旋转至如图位置,点B(E)、C、D在同一直线上时,AFD与DCA的数量关系是_;当DEF继续旋转至如图位置时,中的结论成立吗?请说明理由_.B(E)OCF图FABCDEFAB(E)CDDA图图【解法指导】AFDDCAAFDDCA理由如下:由ABCDEF,ABDE,BCEF, ABCDEF, BACEDF ABCFBCDEFCBF, ABFDEC在ABF和DEC中, ABFDEC BAFDEC BACBAFEDFEDC, FACCDF AODFACAFDCDFDCAAFDDCA【变式题组】1一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.求证:ABED;若PBBC,找出图中与此条件有关的一对全等三角形,并证明.BFACENMPDDACBFE【例】已知,如图,BD、CE分别是ABC的边A C和AB边上的高,点P在BD的延长线,BPAC,点Q在CE上,CQAB. 求证: APAQ;APAQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证APAQ,也就是证APD和AQE,或APB和QAC全等,由已知条件BPAC,CQAB,应该证APBQAC,已具备两组边对应相等,于是再证夹角12即可. 证APAQ,即证PAQ90,PADQAC90就可以.21ABCPQEFD证明:BD、CE分别是ABC的两边上的高,BDACEA90, 1BAD90,2BAD90,12. 在APB和QAC中, APBQAC,APAQAPBQAC,PCAQ, PPAD90 CAQPAD90,APAQ【演练巩固】1如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC的是( )A. CBCD B.BACDAC C. BCADCA D.BD90E21NABDC第2题图ABCDEABCD第1题图第3题图M2有两块不同大小的等腰直角三角板ABC和BDE,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A、B、D不在一条直线上时,下面的结论不正确的是( )A. ABECBD B. ABECBDC. ABCEBD45 D. ACBE3如图,ABC和共顶点A,ABAE,12,BE. BC交AD于M,DE交AC于N,小华说:“一定有ABCAED.”小明说:“ABMAEN.”那么( )A. 小华、小明都对 B. 小华、小明都不对 C. 小华对、小明不对 D.小华不对、小明对4如图,已知ACEC, BCCD, ABED,如果BCA119,ACD98,那么ECA的度数是_.5如图,ABCADE,BC延长线交DE于F,B25,ACB105,DAC10,则DFB的度数为_.6如图,在RtABC中,C90, DEAB于D, BCBD. AC3,那么AEDE_第7题图ABCDE第6题图EABCDABCDEFOCAEBD第4题图第5题图7如图,BAAC, CDAB. BCDE,且BCDE,若AB2, CD6,则AE_.DBACEF8如图, ABC中,BCA90,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D.求证:AECD;若AC12cm, 求BD的长. AEBFDC9如图,ABAC,ADBC于点D,AD等于AE,AB平分DAE交DE于点F, 请你写出图中三对全等三角形,并选取其中一对加以证明.【反馈提高】1如图,在ABC中,ABAC,E、F分别是AB、AC上的点,且AEAF,BF、CE相交于点O,连接AO并延长交BC于点D,则图中全等三角形有( )A4对B5对C6对D7对F第6题图21ABCENM321ADEBCFADECOAEOBFCD第1题图B第2题图第3题图2如图,在ABC中,ABAC,OCOD,下列结论中:AB DECE,连接DE, 则OE平分AOB,正确的是( )ABCD3如图,A在DE上,F在AB上,且ACCE , 1=2=3, 则DE的长等于()ADC B. BC C. AB D.AEAC4下面有四个命题,其中真命题是( )A两个三角形有两边及一角对应相等,这两个三角形全等B两边和第三边上的高对应相等的两个三角形全等C. 有一角和一边对应相等的两个直角三角形全等D. 两边和第三边上的中线对应相等的两个三角形全等5在ABC中,高AD和BE所在直线相交于H点,且BHAC,则ABC_.6如图,EB交AC于点M, 交FC于点D, AB交FC于点N,EF90,BC, AEAF. 给出下列结论:12;BECF; ACNABM; CDDB,其中正确的结论有_.(填序号)7如图,AD为在ABC的高,E为AC上一点,BE交AD于点F,且有BFAC,FDCD.求证:BEAC;AEFCDB若把条件“BFAC”和结论“BEAC”互换,这个命题成立吗?证明你的判定.8如图,D为在ABC的边BC上一点,且CDAB,BDABAD,AE是ABD的中线.求证:AC2AE. ABEDCABCDE9阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC中,AB5,AC13, 求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DEAD,再连接BE,把AB、AC、2AD集中在ABE中,利用三角形的三边关系可得2AE8,则1AD4.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑中线加倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.ABEFCD问题解决:受到的启发,请你证明下面命题:如图,在ABC中,D是BC边上的中点,DEDF,DE交AB于点E,DF交AC于点F,连接EF.求证:BECFEF;AEBFCD问题拓展:如图,在四边形ABDC中,BC180,DBDC,BDC=120,以D为顶点作一个60角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明. 10已知,四边形ABCD中,ABAD,BCCD,BABC,ABC120,MBN6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论