已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
罗湖区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 “m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的( )A必要而不充分条件B充分而不必要条件C充分必要条件D既不充分也不必要条件2 设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD3 等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D724 (文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位5 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD216 已知变量与正相关,且由观测数据算得样本平均数,则由该观测的数据算得的线性回归方程可能是( )ABCD7 已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )A B C D8 已知全集,则( )A B C D9 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A27种B35种C29种D125种10设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD111在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D812函数y=的定义域为( )A(,1)B(,)C(1,+)D(,1)(1,+)二、填空题13某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种14,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力15圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm(不计杯壁厚度与小虫的尺寸)16设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是17已知z是复数,且|z|=1,则|z3+4i|的最大值为18已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前16项和为三、解答题19如图,在RtABC中,EBC=30,BEC=90,CE=1,现在分别以BE,CE为边向RtBEC外作正EBA和正CED()求线段AD的长;()比较ADC和ABC的大小20已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn21已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域22已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程23计算:(1)8+()0;(2)lg25+lg2log29log3224如图,三棱柱ABCA1B1C1中,AB=AC=AA1=BC1=2,AA1C1=60,平面ABC1平面AA1C1C,AC1与A1C相交于点D(1)求证:BD平面AA1C1C;(2)求二面角C1ABC的余弦值 罗湖区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:当m=0时,两条直线方程分别化为:2x1=0,2x2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:6y1=0,4x+3=0,此时两条直线相互垂直;当m0,2时,两条直线相互垂直,则=1,解得m=1综上可得:两条直线相互垂直的充要条件是:m=1,2“m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的充分不必要条件故选:B【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题2 【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)3 【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D4 【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 5 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B6 【答案】A【解析】解:变量x与y正相关,可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A。7 【答案】D【解析】试题分析:由已知,所以,则,令 ,得,可知D正确故选D考点:三角函数的对称性8 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.9 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为1和2两份分给2个社区,当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有5种结果,当三台设备分为1和2两份分给2个社区时,有2C52=20种结果,当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,不同的分配方案有5+20+10=35种结果;故选B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素10【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率11【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B12【答案】A【解析】解:由题意知log0.5(4x3)0且4x30,由此可解得,故选A二、填空题13【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏14【答案】【解析】15【答案】10cm 【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A,则AA=4cm,BC=6cm,AC=8cm,AB=10cm故答案为:10【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决16【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a317【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题18【答案】546 【解析】解:当n=2k1(kN*)时,a2k+1=a2k1+1,数列a2k1为等差数列,a2k1=a1+k1=k;当n=2k(kN*)时,a2k+2=2a2k,数列a2k为等比数列,该数列的前16项和S16=(a1+a3+a15)+(a2+a4+a16)=(1+2+8)+(2+22+28)=+=36+292=546故答案为:546【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:()在RtBEC中,CE=1,EBC=30,BE=,在ADE中,AE=BE=,DE=CE=1,AED=150,由余弦定理可得AD=;()ADC=ADE+60,ABC=EBC+60,问题转化为比较ADE与EBC的大小在ADE中,由正弦定理可得,sinADE=sin30,ADE30ADCABC【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键20【答案】 【解析】解:(1)由等差数列通项公式可知:an=2+(n1)2=2n,当n=1时,2b1=a1=2,b4=a8=16,3设等比数列bn的公比为q,则,4q=2,5 6(2)由(1)可知:log2bn+1=n79,cn的前n项和Sn,Sn=12【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题21【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分22【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1,又b2=1,椭圆方程为: +x2=1 ()F2(0,1),由已知可知直线l1的斜率必存在,设直线l1:y=kx1由消去y并化简得x24kx+4=0直线l1与抛物线C2相切于点A=(4k)244=0,得k=1切点A在第一象限k=1ll1设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m22=0,=(2m)212(m22)0,解得设B(x1,y1),C(x2,y2),则, 又直线l交y轴于D(0,m)=当,即时,所以,所求直线l的方程为【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想23【答案】 【解析】解:(1)8+()0=21+1(3e)=e(2)lg25+lg2log29log32=12=1(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用24【答案】 【解析】解:(1)四边形AA1C1C为平行四边形,AC=A1C1,AC=AA1,AA1=A1C1,AA1C1=60,AA1C1为等边三角形,同理ABC1是等边三角形,D为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灵活就业模式创新-洞察与解读
- 陇南市辅警考试题及答案
- 5G与超声波检测技术融合-洞察与解读
- 2025年网络开发运维工程师岗位招聘面试参考题库及参考答案
- 战略管理论文
- 11466现代企业人力资源管理概论复习资料
- 工商管理的研究课题
- 企业科技档案信息资源开发人员应具备的意识
- 年度工作计划完成情况报告书范文,2025年度工作总结
- 企业人力资源信息化建设探析
- 起重工考试题库及答案
- 成人创伤性颅脑损伤院前急救中国专家共识解读 3
- 武汉大学保密管理办法
- 铁路货运安全培训课件
- 混凝土公司年会活动方案
- 小学生世界艾滋病日宣传教育
- 2025年河北大学版(2024)小学信息科技三年级(全一册)教学设计(附目录 P179)
- 5Why原因分析方法培训
- 2025年4月保险学考试题+答案(附解析)
- 【安全经验分享】100例事故案例
- 学科交叉型课程开发计划
评论
0/150
提交评论