双曲线综合训练题(教师版)_第1页
双曲线综合训练题(教师版)_第2页
双曲线综合训练题(教师版)_第3页
双曲线综合训练题(教师版)_第4页
双曲线综合训练题(教师版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

双曲线综合训练题1、过双曲线的右焦点作直线,交双曲线于两点,若则这样的直线存在( )条 条 条 条2、设F1,F2分别为双曲线1的左、右焦点,过F1引圆x2y29的切线F1P交双曲线的右支于点P,T为切点,M为线段F1P的中点,O为坐标原点,则|MO|MT|等于()A4 B3 C2 D13、已知P是双曲线1(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且0,若PF1F2的面积为9,则ab的值为_4、设椭圆1和双曲线x21的公共焦点分别为F1、F2,P为这两条曲线的一个交点,则|PF1|PF2|的值等于_5、过双曲线1(a0,b0)的左焦点F作圆x2y2的切线,切点为E,延长FE交双曲线右支于点P,若E为PF的中点,则双曲线的离心率为_6、双曲线是的左右焦点,若在右支上存在点使得点到直线的距离为,则离心率的取值范围是( C ) A. B. C. D.7、设分别是双曲线的左,右焦点,以为直径的圆与双曲线C在第二象限的交点为,若双曲线C的离心率为5,则等于( C ) A. B. C. D. 8、已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且F1PF2,则椭圆和双曲线的离心率的倒数之和的最大值为(A )A B C3 D29、ABC的顶点A(5,0),B(5,0),ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是(C)A=1 B =1 C=1(x3) D =1(x4)10、过点与双曲线有且只有一个公共点的直线有几条,分别求出它们的方程。11、已知动点与双曲线的两个焦点、的距离之和为定值,且的最小值为(1)求动点的轨迹方程; (2)若已知,、在动点的轨迹上且,求实数的取值范围解:(1)由已知可得: , 所求的椭圆方程为 . (2) 由题知点D、M、N共线,设为直线m,当直线m的斜率存在时,设为k,则直线m的方程为 y = k x +3 代入前面的椭圆方程得 (4+9k 2) x 2 +54 k +45 = 0 由判别式 ,得. 再设M (x 1 , y 1 ), N ( x 2 , y 2),则一方面有,得 另一方面有 , 将代入式并消去 x 2可得,由前面知, ,解得 . 又当直线m的斜率不存在时,不难验证:,所以 为所求。12、已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点 为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称(1)求双曲线C的方程;(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(2,0)及AB的中点,求直线在轴上的截距b的取值范围(12分) 解析:(1)当表示焦点为的抛物线;(2)当时,表示焦点在x轴上的椭圆;(3)当a1时,表示焦点在x轴上的双曲线. (1设双曲线C的渐近线方程为y=kx,则kx-y=0该直线与圆相切,双曲线C的两条渐近线方程为y=x故设双曲线C的方程为又双曲线C的一个焦点为,双曲线C的方程为:.(2)由得令直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根因此,解得又AB中点为,直线l的方程为: 令x=0,得,13、椭圆C1:=1(ab0)的左右顶点分别为A、B.点P双曲线C2:=1在第一象限内的图象上一点,直线AP、BP与椭圆C1分别交于C、D点.若ACD与PCD的面积相等(1)求P点的坐标; (2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率,若不能,请说明理由.(14分)解析:(1)设P(x0,y0)(x00,y00),又有点A(a,0),B(a,0). ,又 ,.(2)代入,CD垂直于x轴.若CD过椭圆C1的右焦点,则故可使CD过椭圆C1的右焦点,此时C2的离心率为.14、已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.【解法1】()由题意,得,解得,所求双曲线的方程为.高考资源网()点在圆上,圆在点处的切线方程为,化简得.由及得,切线与双曲线C交于不同的两点A、B,且,且,高考资源网设A、B两点的坐标分别为,则,且,. 的大小为.【解法2】()同解法1.()点在圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论