




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
XX教育辅导教案学生姓名性别年级学科数学授课教师上课时间年 月 日第( )次课共( )次课课时: 课时教学课题 二次函数求最大值和最小值教学目标利用二次函数的图像和性质特点,求函数的最大值和最小值教学重点与难点含有参数的二次函数最值求解。课堂引入:1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题方法的重要性(初高中衔接、高中必修一重点学习内容)。2) 当时,求函数的最大值和最小值(引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫)二次函数求最值方法总结:一、设,当时,求的最大值与最小值。1、当时,它的图象是开口向上的抛物线,数形结合可求得的最值:1) 当时,时,取最小值:;的最大值在或处取到。2) 若,二次函数在时的函数图像是递增的,则时,取最小值;则时,取最大值。若,二次函数在时的函数图像是递减的,则时,取最小值;则时,取最大值。 2、当时,它的图象是开口向上的抛物线,数形结合可求得的最值:1) 当时,时,取最大值:;的最小值在或处取到。2) 若,二次函数在时的函数图像是单调递减的,则时,取最小值;则时,取最大值。若,二次函数在时的函数图像是单调递增的,则时,取最小值;则时,取最大值。二、二次函数最值问题常见四种考察题型:1) 对称轴定、取值范围定;2) 对称轴定、取值范围动;3) 对称轴动、取值范围定;4) 对称轴动、取值范围动。【例题解析】例1当时,求函数的最大值和最小值分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量的值 解:作出函数的图象当时,当时,【变式训练】变式1、当时,求函数的最大值和最小值分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量的值 解:作出函数的图象当时,当时,【例题解析】例2、当时,求函数的最小值(其中为常数)分析:由于所给的范围随着的变化而变化,所以需要比较对称轴与其范围的相对位置解:函数的对称轴为画出其草图(1) 当对称轴在所给范围左侧即时:当时,;(2) 当对称轴在所给范围之间即时:当时,;(3) 当对称轴在所给范围右侧即时:当时,综上所述:【变式训练】变式2、当时,求函数的最小值(其中为常数)方法总结:1、 图像法求二次函数最值;2、 利用分类讨论思想和二次函数图像特点求解二次函数最值。(对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业分包施工管理办法
- 肉鸽育雏期管理办法
- 考核评定及管理办法
- 规划设计监理管理办法
- 询价管理办法及流程
- 中学外籍教师管理办法
- 业务超市开发管理办法
- 《审计现场管理办法》
- oa督办平台管理办法
- 西藏旅游景区管理办法
- 小学二年级下安全课件
- T-CSEA 25-2022 批量热浸镀锌行业含锌固废资源化利用技术规范
- 继发性肥胖症的临床特征
- DB21∕T 3149-2019 玉米秸秆还田机械化作业技术规程
- 报价函(工程项目招标文件资料)
- 2024年中级通信专业实务(终端与业务)考试题库大全(含答案)
- 中小学幼儿园食堂食品安全培训课件
- 《国际商务单证》课件
- 电力增容项目施工组织设计
- 2022版ISO27001信息安全管理体系基础培训课件
- 论高校思政教育宏大叙事的有效性建构
评论
0/150
提交评论