




已阅读5页,还剩68页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,第二章现金流量与资金的时间价值,2.1现金流量2.1.1现金流量的概念物质形态:经济主体生产要素服务或产品货币形态:经济主体投入资金营业收入现金流量指考察对象在整个考察期间各时点t上实际发生的资金流出或资金流入。或者某一系统在一定时期内流入该系统和流出该系统的现金量。几点说明:考察对象;(分析)考察期;时点t;现金流出、现金流入和净现金流量。,将考察对象视为一个系统,考察对象可以是一个建设项目,一个企业,一个地区,或一个国家。譬如,从建设项目或从企业的角度进行财务评价,可以不考虑外部效果(解决就业问题、污染环境等),但从国家和地区的角度,就需要进行国民经济评价和社会评价。再譬如,从社会的角度进行评价,需要考虑重复建设和总供给与总需求的问题。,考察对象,(分析)考察期,考察期间,或者称之为分析期,一般包括建设期和生产使用期可以根据项目的“寿命周期”确定;可以根据(合作)合约规定的时间来确定,如BOT项目;考察期内实际发生的各种费用和收益,均货币数量化为资金流入或资金流出。,时点t,将整个考察期按计息间隔期划分为若干时点,计息间隔期可以是月、季度、半年或1年。具体经济分析时,发生于计息间隔期内的现金流量,必须按“期末惯例”进行处理,资金流出或资金流入只能发生在某一个时点上。,现金流出、现金流入和净现金流量,流出系统的资金,称为现金流出(CashOutput),记为(CO)t;流入系统的资金,称为现金流入(CashInput),记为(CI)t;现金流入与现金流出之差,称为净现金流量(NetCashFlow),记为NCF或(CICO)t。显而易见,发生在某个具体时点上的净现金流量可能是负的,也可能是正的。,6,2.1.2现金流量图(CashFlowDiagram),现金流量图的三要素,即大小(数额)、方向(支出或收入)和时间点。,现金流量图是表示项目在整个寿命期内各时期点的现金流入和现金流出状况的一种图示。,7,(1)现金流量图的时间坐标:水平线是时间标度,每一格代表一个时间单位(年、月、日),第n格的终点和第n+1格的起点是相重合的。,图2-1现金流量图的时间坐标,8,(2)现金流量图的箭头:箭头表示现金流动的方向,向下的箭头表示支出(现金的减少),向上的箭头表示现金收入(现金的增加),箭头的长短与收入或支出的大小成比例。,图2-2现金流量图的箭头,9,(3)现金流量图的立足点,现金流量图的分析与立足点有关:如贷款人的立脚点,或者借款人的立脚点。,10,(4)项目整个寿命期的现金流量图,以新建项目为例,可根据各阶段现金流量的特点,把一个项目分为四个区间:建设期、投产期、稳产期和回收处理期。,11,例:某项目第一、二、三年初分别投资100万元、70万元、50万元;第四年开始每年年末均收益90万元,经营费用均为20万元,寿命期10年,期末残值40万元,绘制该项目的现金流量图。,12,2.2资金时间价值2.2.1资金时间价值的概念与意义(1)资金时间价值的概念资金的时间价值是指资金随着时间的推移而形成的增值。资金的时间价值可以从两方面来理解:第一,将资金用作某项投资,由于资金的运动,可获得一定的收益或利润。第二,如果放弃资金的使用权力,相当于付出一定的代价。,13,案例1(Case1):某公司面临两个投资方案A、B,寿命均为4年,初始投资均为10000元。实现利润的总数也相同,但每年的数字不同,如下表所示:,如果其它条件相同,你认为应该选用哪个方案?,时间价值的案例说明:回收越快越好!,案例2:如果其它条件相同,你认为C、D哪个方案较好?,时间价值的案例说明:投入越晚越好!,16,(2)资金时间价值的意义第一,它是衡量项目经济效益、考核项目经营成果的重要依据。第二,它是进行项目筹资和投资必不可少的依据。,17,影响资金时间价值的因素:1、资金本身的大小2、投资收益率(或利率)3、时间的长短4、风险因素5、通货膨胀衡量资金时间价值的尺度绝对尺度:利息、利润相对尺度:利率、利润率,18,2.2.2资金时间价值的计算利息利息:是指占用资金应付出的代价或者放弃资金的使用权应得的补偿。在借贷的过程中,债务人支付给债权人超过原借贷金额的部分就是利息。利率利率:是指在一个计息周期内所得的利息额与本金或贷款金额的比值。即单位时间内所得利息额与原借贷金额之比,通常用百分数表示。,计算利息的时间单位称为计息周期;计息周期通常有年、半年、季、月、周或天,相应的利率分别称为年利率、半年利率、季利率、月利率等。,19,1、利率的高低取决于社会平均利润率的高低,并随之变动;2、利率的高低取决于金融市场上借贷资本的供需状况;3、贷款人要承担一定的风险,风险越大,对借款人所要求的利率越高;4、借贷资本期限的长短。贷款期限越长,不可预见因素越多,风险越大,利率越高;反之则反是。,影响利率的因素,20,利息和利率在工程经济活动中的作用,1、利息和利率是以信用方式筹集资金的重要工具;2、促使投资者节约使用资金,提高使用效率;3、利息和利率是国家宏观调控经济运行的重要杠杆;4、利息和利率是激励金融企业发展的重要条件。,21,(1)单利法单利法指仅仅以本金计算利息的方法。单利计息时,利息额的大小与时间呈线性关系。不论计息期数为多大,只有本金计息,而利息本身不再计息。,假设以年利率10%借入资金1000元,共借4年,其偿还情况如下表所示:,22,设P代表本金,n代表计息期数,i代表利率,I代表所付或所收的总利息,F代表本利和,则:,23,单利终值的计算终值指本金经过一段时间之后的本利和。F=P+Pin=P(1+ni)(2-4)其中:P本金,期初金额或现值;i利率,利息与本金的比例,通常指年利率;n计息期数(时间),通常以年为单位;F终值,期末本金与利息之和,即本利和,又称期值。,24,例2-1借款1000元,借期3年,年利率为10%,试用单利法计算第三年末的终值是多少?,解:P=1000元i=10%n=3年根据式(2-4),三年末的终值为F=P(1+ni)=1000(1+310%)=1300元,25,单利现值的计算现值是指未来收到或付出一定的资金相当于现在的价值,可由终值贴现求得。例2-2计划3年后在银行取出1300元,则需现在一次存入银行多少钱?(年利率为10%)解:根据式(2-5),现应存入银行的钱数为,(2-5),26,(2)复利法复利法指用本金和前期累计利息总额之和为基数计算利息的方法,即将本期的利息转为下期的本金,下期将按本利和的总额计息,俗称“利滚利”、“驴打滚”。假设以年利率10%借入资金1000元,共借4年,其偿还情况如下表所示:,27,第一年年初第一年年末第二年年末第n年年末,28,复利终值的计算上式中符号的含义与式(2-4)相同。式(2-6)的推导如下,(2-6),29,例2-3某项目投资1000元,年利率为10%,试用复利法计算第三年末的终值是多少?,30,案例,在第一年年初,以年利率6%投资1000元,则到第四年年末可得本利和若干?,31,复利终值,32,名义利率与实际利率(27页)在复利计息中,利率通常以年作为时间单位。当利率的时间单位与计息周期不一致时,或者说,当计息周期小于一年时,就出现年名义利率的概念。a.名义利率年名义利率指计息周期利率与每年(设定付息周期为一年)计息周期数的乘积,即:年名义利率=计息周期利率年计息周期数(2-8)例如,半年计算一次利息,半年利率为4%,1年的计息周期数为2,则年名义利率为4%2=8%。通常称为“年利率为8%,按半年计息”。这里的8%是年名义利率。,33,b实际利率若将付息周期内的利息增值因素考虑在内,所计算出来的利率称为实际利率。实际年利率与名义年利率之间的关系可用下式表示:,34,(2-11),其中:实际年利率名义年利率m年计息周期数。下面推导式(2-11)。设:投资一笔资金P,年计算周期数为m,计息周期利率为r,则名义年利率i为:,35,一年末终值F为:,所以,实际年利率为:,36,由式(2-11)可看出,当m=1,则,即若一年中只计息一次,付息周期与计息周期相同,这时名义利率与实际利率相等。,37,将1000元存入银行,年利率为8%,如果计息周期设定为半年,则存款在第1年年末的终值是:如果1年中计息m次,则本金P在第n年年末终值的计算公式为:,(2-9),38,当式(2-9)中的计息次数m趋于无穷时,就是永续复利,(2-10),如果年名义利率为8%,本金为1000元,则永续复利下第3年年末的终值为,39,案例名义利率和实际利率,40,2.3资金等值计算2.3.1资金等值资金等值指在不同时点上数量不等的资金,从资金时间价值观点上看是相等的。例如,1000元的资金额在年利率为10%的条件下,当计息数n分别为1、2、3年时,本利和Fn分别为:,资金等值的要素是:a.资金额;b.计息期数;c.利率。,42,2.3.2等值计算中的四种典型现金流量(1)现在值(当前值)P现在值属于现在一次支付(或收入)性质的货币资金,简称现值。,43,(2)将来值F将来值指站在现在时刻来看,发生在未来某时刻一次支付(或收入)的货币资金,简称终值。如图2-8。,(3)等年值A等年值指从现在时刻来看,以后分次等额支付的货币资金,简称年金。年金满足两个条件:a.各期支付(或收入)金额相等b.支付期(或收入期)各期间隔相等年金现金流量图如图2-9。,45,(4)递增(或递减)年值G递增(或递减)年值指在第一年末的现金流量的基础上,以后每年末递增(或递减)一个数量递增年值现金流量图如图2-10。,46,小结:大部分现金流量可以归结为上述四种现金流量或者它们的组合。四种价值测度P、F、A、G之间可以相互换算。在等值计算中,把将来某一时点或一系列时点的现金流量按给定的利率换算为现在时点的等值现金流量称为“贴现”或“折现”;把现在时点或一系列时点的现金流量按给定的利率计算所得的将来某时点的等值现金流量称为“将来值”或“终值”。,47,2.3.3普通复利公式(1)一次支付类型一次支付类型的现金流量图仅涉及两笔现金流量,即现值与终值。若现值发生在期初,终值发生在期末,则一次支付的现金流量图如图2-11。,48,一次支付终值公式(已知P求F),称为一次支付现值系数,或称贴现系数,用符号,称为一次支付终值系数,用符号,一次支付现值公式(已知F求P),49,例2-4如果要在第三年末得到资金1191元,按6%复利计算,现在必须存入多少?,解:,(2)等额支付类型为便于分析,有如下约定:a.等额支付现金流量A(年金)连续地发生在每期期末;b.现值P发生在第一个A的期初,即与第一个A相差一期;c.未来值F与最后一个A同时发生。等额支付终值公式(已知A求F)等额支付终值公式按复利方式计算与n期内等额系列现金流量A等值的第n期末的本利和F(利率或收益率i一定)。其现金流量图如图2-13。,根据图2-13,把等额系列现金流量视为n个一次支付的组合,利用一次支付终值公式(2-7)可推导出等额支付终值公式:,用乘以上式,可得,(2-13),(2-14),由式(2-14)减式(2-13),得,(2-15),经整理,得,(216),式中,用符号,表示,称为等额支,付终值系数,例25若每年年末储备1000元,年利率为6%,连续存五年后的本利和是多少?解:,54,等额支付偿债基金公式(已知F求A),等额支付偿债基金公式按复利方式计算为了在未来偿还一笔债务,或为了筹措将来使用的一笔资金,每年应存储多少资金。,55,由式(216),,(217),用符号表示,称,为等额支付,偿债基金系数。,可得:,例26如果计划在五年后得到4000元,年利率为7%,那么每年末应存入资金多少?,解:,等额支付现值公式(已知A求P),这一计算式即等额支付现值公式。其现金流量图如图215。,由式(216),(216),和式(27),(27),得,(218),59,经整理,得,(219),式(219)中,用符号,表示,称为等额支付现值系数。,60,例27如果计划今后五年每年年末支取2500元,年利率为6%,那么现在应存入多少元?,解:,61,等额支付资金回收公式(已知P求A),62,等额支付资金回收公式是等额支付现值公式的逆运算式。由式(219),可得:,(220),式(220)中,,用符号表示,,表示,称为等额支付资金回收系数或称为,等额支付资金,还原系数。可从本书附录复利系数表查得。,63,例28一笔贷款金额100000元,年利率为10%,分五期于每年末等额偿还,求每期的偿付值。,解:,64,与互为倒数,与互为倒数,与互为倒数,65,(221),故等额支付资金回收系数与等额支付偿债基金系数存在如下关系:,(222),因为,,66,24资金时间价值的具体应用(本章重点习题),例212某工程寿命五年,每年年初投资100万元,该工程投产后年利润为10%,试计算投资于期初的现值和第五年末的终值。,67,例:某人为其小孩上大学准备了一笔资金,打算让小孩在今后的4年中,每月从银行取出500元作为生活费。现在银行存款月利率为0.3%,那么此人现在应存入银行多少钱?解:现金流量图略计息期n=412=48(月),68,例213某公司计划将一批技术改造资金存入银行,年利率为5%,供第六、七、八共三年技术改造使用,这三年每年年初要保证提供技术改造费用2000万元,问现在应存入多少资金?,69,图223例213现金流量图解:设现金存入的资金为P0,第六、七、八年初(即第五、六、七年末)的技术改造费在第四年末的现值为P4。,答:现应存入的资金为4480.8万元。,70,例214试计算图224中将授金额的现值和未来值,年利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国防教育知识竞赛题库与答案
- 2025年锅炉工应知应会知识考试题库含答案
- 2025年广西梧州市辅警招聘考试题题库(含参考答案)
- 淮安地生中考试卷及答案
- 工业材料购销合同协议
- 八下思品月考试卷及答案
- 融城医院笔试题目及答案
- 2025年中级经济师考试《农业经济专业知识与实务》试卷及答案
- 成都中考试卷汇编题及答案
- 人力社保笔试题库及答案
- 英语教学课件Unit 2 Different families课件9
- 2025春 新人教版美术小学一年级下册致敬平凡
- 富时新加坡海峡时报指数历史行情(1999年08月31日-2025年3月28日)
- 危险废物分析制度
- 换药室工作制度
- 水资源开发与保护联合协议
- DB42∕T 1496-2019 公路边坡监测技术规程
- 产品质量管理及控制作业指导书
- 前端工作总结答辩
- 「见新机·聚增长」2025哔哩哔哩手机PC行业白皮书
- 《急性心肌梗死急诊》课件
评论
0/150
提交评论