




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Please visit for more information_ 大学数学吧百度 6.2 1 1. . 21 2 tantan ttt x dxxttt x dxx ttt xxttt TTBudxCu dxdxu T uuBudxCu dxdxu uuTBC uuu dx a ubucuu 2. 2. 2 x dxxtt x dxx tt xxtt EuEuFdxdxu uuEF u dx a ufu 3. 3. t x dxxt t x dxx t t xxt kuAdxkuAdxHeAdxc Adx u uukH eu cdxc Duheu 6. 6. 21 2 22 2 2 tantan 1 2 1 2 tt x dxxtt l x xtt T xdxT xdxu T xdx uT x udxu T xx dxlx lxuu x 7. 7. 2 21 2 2 tantan tt x dxxtt l x xtt T xdxT xdxudx u T xdx uT x udxudxu T xgdxg lx g lx uuu x 9. 9. xt xt xxtxxttt xxtxxttt dI V xdxV xLdx VLI dt dVICV I xdxI xCdx dt VLILILCV ICVCVCLI 7.1 1. u(x,t) = 1 2 ( + ) + ( ) + 1 2 () + (1) = 0, = 1, u(x,t) = 1 20 + 0 + 1 2 + = 1 2 ( + ) ( ) = (2) = sinx, = 2, u(x,t) = 1 2sin( + ) + sin ( ) + 1 2 2 + = + 1 2 3 3 | + (3) = 3, = , u(x,t) = 1 2 ( + )3+ ( )3 + 1 2 + = 1 2 ( + )3+ ( )3 + 1 2 2 2 | + (4) = , = 1, u(x,t) = 1 2 cos( + ) + (x at) + 1 2 1 + = cosxcosat + 1 2 ( + ) ( ) 3. 3. - 11 ( , ) ()() 22 11 ( ( )() ()() 22 ) () x at x at u x txatxat a xatxatxa a txat xt d a 4. 4. 2 1 ( ,0) 1 ( ,0)sin 111 ( , )cos ()cos ()sin 22 11 cos ()cos ()cos ()cos () 22 cos () ttxx x t x at x at Va V V xAcoskxa CL I V xAkkx CCL V x tAk xatAk xatAkkx aCL Ak xatAk xatAk xatAk xat Ak xat 2 1 ( ,0)cos 1 ( ,0)sin 111 ( , )cos ()cos ()sin 22 11 cos ()cos ()cos ()cos () 22 cos () ttxx x t x at x at Ia I C I xAkxa LCL V I xkAkx LL CC I x tAk xatAk xatAkkx LLaL CCCC Ak xatAk xatAk xatAk xat LLLL C Ak xat L 5. 5. 2 23 2 , 22 ( , ) x x xxx xx ttxx tt tt vvv uu xxx vvv u xxx va v v u x v x t 6. 6. 22 2 22 2 22 22 2 22 2 1 11 let , 1 11 1 1 1 tt tt x x x tt x tt xx xuxu xhxaht v u hx v vhx u u vhxv hx u hx vhxvvxx xhahhx hx vhxvvx xhahhx vhx ha 22 2 tt ttxx hx v h va v 7. 7. 12 230 30 , 3,3 then 0, xxxyyy uuu u xyxy xy xy xyxy xy xy xyxy uuff 8. 8. 12 230 30 , 3,3 then 0, xxxyyy uuu u xyxy xy xy xyxy xy xy xyxy uuff 10.10. 0 0 12 12 12 12 1 2 1 ( , )()() ( ,0)( )( )( ) ( ,0)( )( )( ) (0, )()()0.important 11 ( )( )( ) 2 11 ( )( )( ) 2 :0 1 ()( 2 t x x x x u x tf xatfxat u xf xfxx u xafxafxx utf atfat f xxd a fxxd a when xat f xatx 0 0 0 0 2 12 1 21 1 )( ) 11 ()()( ) 2 ( , )()() :0 11 ()()( ) 2 11 ()().()( ) 2 ( x at x x at x x at x at x x atd a fxatxatd a u x tf xatfxat when xat f xatxatd a fxatf atxatxd a u 00 1111 , )()( )()( ) 22 x atat x xx x txatdatxd aa 13.13.See See 7.2 1. 1. 0 2 0 2 0 223 0 23 1 , 2 11 22 1 2 2 111 223 26 tx a t x a t x a t t x a t t t u x tad d a ad a xtxa tad xtxata xtat 0 0 0 2 0 2 1 ,8 2 1 8 2 1 16 2 1 8 2 4 yxy xy y xy xy y y u x yd d d yd y y 2. 2. 0 0 00 1 sinsin 2 1 2 1 2 2 111 I tx a t II x a t t tt tt t uxatxat ue d d a ax te d a xte dxe d xt exte xextx 8.1 1. 1. 2 * 2 (0, )( , )0 :. 0 (0)( )0.( .minus) ( )cossin (0)0 ( )sin0,. ( )sin 0 ( ) txx nn n l nn uDu utu l t let uXT TX XTDX T DTX XX XX l X xAxBx XA n X lBlnN l n XxBx l n TDT l T tC e 2 2 2 1 11 0 0 11 ( , )sin ( , )( , ) ( ,0)( )( ,0)sin 2 ( )sin 2 ( , )( , )( , )( )sinsin Dt n Dt l nn n n nn nn l n n Dt l l n nn n ux tE ex l u x tux t n u xxuxEx l n Exxdx ll nn u x tux tu x txxdx ex lll 2 2 (0, )( , )0 :. 0 (0)( )0.( .minus) ( )cossin (0)0 ( )sin0,. ( )cos 0 ( ) txx xx xx x x nn n uDu utu l t let uXT TX XTDX T DTX XX XXl X xAxBx XB n XlAlnN l n XxAx l n TDT l T t 2 2 0 00 0 00 00 0 ( , )cos ( , )( , ) ( ,0)( )( ,0)cos 12 ( ),( )cos 12 ( , )( , )( )( )cos n Dt l n n Dt l nn n n nn nn ll n ll n n C e n ux tE ex l u x tux t n u xxuxEx l n Ex dx Exxdx lll n u x tux tx dxxxdx e lll 2 1 cos n Dt l n n x l 2 * (0, )( , )0 :. 0 (0)( )0.( .minus) ( )cossin (0)0 1 2 ( )cos0,. 1 2 ( )sin txx x x x nn uDu utu l t let uXT TX XTDX T DTX XX XXl X xAxBx XA n XlBlnN l n XxBx l 2 2 2 1 2 1 2 1 11 1 2 0 ( ) 1 2 ( , )sin ( , )( , ) 1 2 ( ,0)( )( ,0)sin 2 ( ) n Dt l nn n Dt l nn n n nn nn n n TDT l T tC e n ux tE ex l u x tux t n u xxuxEx l Ex l 2 0 1 2 0 11 1 2 sin 11 222 ( , )( , )( )sinsin l n Dt l l n nn n xdx l nn u x tux txxdx ex lll 2. 2. 2 2 2 2 * 2 (0, )(2, )0 ( ,0)0 :. 0 (0)(2)0.( .minus) = cossin (0)0 ( )sin20,. 2 ( )sin 2 0 2 ttxx t nn ua u utut u x let uXT TX XTa X T a TX XX XX X AxBx XA n X lBnN n XxBx n a TT 1 1 212 001 ( )cossin 22 (0)0,0 sincos 22 ( , )( , ) ( ,0)( )sin 2 2 ( )sinsin(2)sin 2222 22 sincoscosco 222 nnn n nn n n n n n n an a T tCtDt TD nn a uExt u x tux t n u xxEx nnn Exxdxhxxdxhxxdx nnn xxxdxxx nn 122 011 s 2 22 cossin 22 22222 cossin2coscossin 22222 22222 cossin2coscos2coss 222 n n xdx nn xxx nn nnnnn Ehxxxhxhxxx nnnnn nnn hhnhn nnnnn 22 22 1 2 incossin 22 8 sin 2 8 ( , )sinsincos 222 n nn n n hn n hnnn a u x txt n 3. 3. 2 2 2* 2 :. 0 (0)( )0.( .minus) cossin (0)0 ( )sin0,. ( )sin 0 (0)0 ( )cossin (0)0,0. ( nn nnn n let uXT TX XTa X T a TX XX XX XAxBx XA XBnnN XxBnx TnaT T T tCnatDnat TD T t 1 1 1 )cos sincos ( , ) ( ,0)3sinsin 3,0.(1) ( , )3sin cos n nn n n n n n Cnat uEnxnat u x tu u xxEnx EEn u x txat 2 2 2 2 :. 0 (0)( )0.( .minus) cossin (0)0 1 ( )cos0,. 2 1 ( )sin 2 1 0 2 (0)0 ( x x nn n let uXT TX XTa X T a TX XX XX XAxBx XA XBnnN XxBnx TnaT T T 0 3 0 3 0 11 )cossin 22 (0)0,0. 1 ( )sin 2 11 sinsin 22 ( , ) 1 ( ,0)sin 2 2123*( 1) sin* 2 1 2 nn n nn nn n n n n n n tCnatDnat TC T tDnat uEnxnat u x tu u xxEnx Exnxdx n 2 22 2 22 0 2 1 2 23*( 1)211 ( , )*sinsin 22 11 22 n n n u x tnxnat nn 0 0 2 * 2 : 4 ( ,0) (0, )(1, )0 :. 4 4 0 (0)(1)0.( .minus) cossin (0)0 (1)sin0,. ( )sin 40 ( ) txx nn n let uvN vv v xN vtvt let vXT TX XTX T TX XX XX XAxBx XA XBnnN XxBn x TnT T tC 2 2 2 4 4 1 0 1 1 0 0 0 4 0 1 0 sin ( , ) ( ,0)sin 2 2sin(cos1) 2 ( , )(cos1)sin ( , )( , ) nt n nt nn n n n n n nt n e uEn xe v x tu v xNEn x N ENn xdxn n N v x tnn xe n u x tv x tN 2 * 2 :. 0 (0)(1)0.( .minus) cossin (0)0 (1)sin0,. ( )sin 0 (1)0,(0)0 ( )sh(1) sinsh(1) ( nn nn nn nn let uXY YX XYX Y YX XX XX XAxBx XA XBnnN XxBn x YnY YY YyDny uEn xny u 1 1 1 33 0 3 3 , )( , ) ( ,0)(1)sinsh() 2 1 ( 1)4 1 ( 1) ( 1)( 1) sh()2(1)sin2 4 1 ( 1) sh 4 1 ( 1) ( , ) s n n n n nn nn n n n n x tux t u xx xEn xn Enx xn xdx nn nn E nn u x t n 1 sinsh(1) hn n xny n Please visit for more information_ 大学数学吧百度 4. 4. 2 2 2 2 2 Assume , we obtain cossin 000 0, 0,. si . n . . nn tttxx nnnn uauc u uXT XTaXTc X T TaTX c TX XAxBx XA n X n XB lln l n c TaTTT x ee l l 5. 5. 2 2 2 2 (0, )( , )0 ( ,0)0 ( ,0) :. 0 (0)( )0.( .minus) cossin (0)0 1 ( )cos0,. 2 ttxx x t x ua u utu l t u x Q ux ES let uXT TX XTa X T a TX XX XX l XAxBx XA X lBlnnN l 2 1 ( )sin 2 1 0 2 11 cossin 22 (0)0 1 cos 2 11 sincos 22 11 ( , )sincos 22 nn nnn nn nn nn n XxBnx l a TnT l aa TCntDnt ll TD a TCnt l a uEnxnt ll u x tEnxn l 0 0 0 0 2 2 11 ( ,0)cos 22 1 sin 1212122 cos* 1122 22 12 * 1 2 2 ( , ) n xn n l n l n n n a t l Q uxnEnx ESll nx lQQQ nEnxdx llESllESlES nn ll Ql E ES n uu x t 2 0 2 111 *sincos 22 1 2 n n Qla nxnt ESll n 6. 6. 2 2 2 2 (0, )( , )0 ( ,0)0 ( ,0) :. 0 (0)( )0.( .minus) cossin (0)0 1 ( )cos0,. 2 ( ttxx x t x n ua u utu l t u x ux let uXT TX XTa X T a TX XX XX l XAxBx XA X lBlnnN l X 1 )sin 2 n xBnx l 2 0 1 0 2 11 cossin 22 (0)0 1 cos 2 11 sincos 22 11 ( , )sincos 22 1 ( ,0) nnn nn nn nn n n x a TnT l aa TCntDnt ll TD a TCnt l a uEnxnt ll a u x tEnxnt ll uxn 0 0 0 2 2 2 2 1 cos 22 1 sin 1212122 cos* 1122 22 1 2* 1 2 11 ( , )2*sin 2 1 2 n n l n l n n n n Enx ll nx l nEnxdx lllll nn ll El n uu x tln n 0 1 cos 2 n a xnt ll 7. 7. 2 2 2 2 2 22222 :. 0,(0)(1)0,sin, 0, (0)(1)0,sin, 0,(0)(1)0,sin, ()0 nn mm pp let uXYZT XYZTaX YZTXY ZTXYZ T TXYZ a TXYZ XXXXXAn xn YYYYYBm ym ZZZZZCp zp TanmpT 222222 222 222 222 1 ( )cossin (0)0,0 ( )cos ( , , , )sinsinsincos ( , , , )sinsinsincos ( , , ,0)si nmpnmpnmp nmp nmpnmp nnmp nmp nmp TtDnmpatEnmpat TE TtDnmpat ux y z tFn xm yp znmpat u x y z tFn xm yp znmpat u x y z 1 111 nsinsinsinsinsin 1,0,(111) ( , , , )sinsinsincos 3 nmp n nmp xyzFn xm yp z FFnmp u x y z txyzat 8. 8. 0 0 0 (0, )(0, )0 ,: ( , )0( , )0 ( ,0)( ,0)0 let: =. 0 (0)( )0.( .minus) ( )cossin (0)0 ( )co txxtxx xx uDuvDv utuvt let uvu v l tu l t v xuu x v XT TX XTDX T DTX XX XX l X xAxBx XA X lB 2 2 2 2 1 2 1 2 1 2 1 s0,. 2 1 sin 2 1 0 2 ( ) 1 sin 2 1 ( , )sin 2 nn a nDt l nn a nDt l nn n n lnnN l XBnx l a TnDT l T tC e vEnxe l v x tEnxe l 2 2 0 0 0 0 0 0 1 2 0 0 0 1 ( ,0)sin 2 221 sin 12 2 21 ( , )sin 12 2 ( , )( , ) a Dt l n n n l n a nDt l n v xuEnx l u Eunxdx ll nl u v x tnxe l nl u x tv x tu 9 9. . (4) 2 2 (4) 4444 4 * 4 2 2 :. 0 0 (0)(0)0 ( )( )0 cossinsinhcosh ( )sin0,. ( )sin 0 ( ) nn n let uXT TX XTa XT a TX XX XX X lXl XAxBxCxDx n X lBlnN l n XxBx l n TaT l T t 22 22 22 1 0 1 cossin cossinsin ( , )cossinsin 2 ( ,0)( )sin,( )sin nn nnn nn n l nn n t nn EatFat ll nnn uEatFatx lll nnn u x tEatFatx lll nn u xxEx Exxdx lll u 22 0 1 22 0 2 0 1 2 ( ,0)( )sin,( )sin 2 ( )sin 2 ( , )( )sincossinsin l nn n l l n nnnn xxFax Faxxdx lllll n xxdx nnnn ll u x txxdxatatx lllll n a l 11.11. 22 2 2 2 22 222 22 22 2 2 2 22 cossin 0,0 2 0,2, 8 sin 2 1 ,0sinsin 2 1 ,0 1 , n n n E t i nn E t i nn n n i tx XT i XTX T TX iE TX EE XAxaBxa XaA En X aanE a TC e n D exa a n xDxaxa aaa DD a x te a 2 sin E t i xa a 8.2 3. 3. 1. 2 2 2 * 2 1 2 11 2 :. 0 (0)0( )sin. ( )0 ( , )sin sinsin si ttxx nn ntxx n nn nn nn ua u let uXT TX XTa X T a TX XX n XXxBxnN l X l n u x tTxua uAx l nn an TxTxAx lll n a TT l 1 2 0 2 2 2 n 22 sin1 2 1 cossin 2 1 (0)0 (0)0 2 1 cos1 2 1 ( , ) n l n nn n nnn n nn nn n n n n xAx l n anAl TTAxxdx llln Al n an a n TCtDt ll n a l Al n TC n a l n a TD l Al n a n Tt l n a l Al n u x t 2 1 cos1sin n n n an tx ll n a l 2. 2 2 2 2 2 0 0 0 :. 0 sin (0)( )0 1 ( )0,. 2 1 sin 2 1 sinsin 2 1 sin 2 txx nn ntxx n n n ua u let uXT TX XTa X T a TX XX XBx XX l X lnnN l XBnx l uTnxua uAt l Tnx l 2 0 2 0 2 0 11 sinsin 22 11 sinsin 22 122 sin sin 12 2 Asume:cossin n n nn n l nn nnn a TnnxAt ll a TTnnxAt ll aAt TTnAtdx ll n TXtYt 2 2 4 2 2 12 sin sincoscossin 12 2 2 1 2 1 1 0 2 2 12 2 12 1 2 nnnn n nn nn n aAt XtYtnXtYt l n A n X a a YnX n l l aA A nYX l n n Y 2 2 4 2 2 1 2 44 22 1 2 2 1 2 221 112 22 ( )cos 11 22 a nt l nn a n l a n l AAa n l nn T tD et aa nn ll 2 44 22 1 2 4 2 sin 22 11 22 (0)0, 11 22 221 112 22 ( )1*cos 1 2 nn a nt l n t AA nn TDD aa nn ll AA n nn T tet a n l 2 2 4 2 21 2 4 2 4 2 sin 1 2 211 *1cossin 12 1 2 2 21 ( , )* 1 1 2 2 a nt l a l t a n l Aa etnt l a n n l A u x t a n n l 2 21 2 0 11 1cossinsin 22 a nt l n a etntnx ll 8.5 1 1 2 22 2 2 2 2 2 0 0 :. 0 ( )cossin ( )1 0 ( , )cossin :, ( , )cossin ( , nnn nn nnn nn nnnn n n nn n let uR ddRR d dd d n AnBnd RCDddRn R d u RAnBnCD whena uAnBn u a 0 1 0 0 1 )coscossin ,0 ( , )cos :, ( , )cossin ( , )coscossin ,0 ( , )cos n nn n n n nn n n nn n n AAnBna AaA B A u a whena uAnBn u aAAnBna A A B a Aa u 2 2. . 2 0 0 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Lesson 1 How are your study habits说课稿-2025-2026学年中职基础课-新模式英语(1)-劳保版-(英语)-52
- 2 运用发散思维说课稿-2025-2026学年高中思想政治人教版选修4科学思维常识-人教版
- 污水系统改造工程中的验收标准与质量检查流程
- 变压器及配电室建设项目技术方案
- 2025合作伙伴解除合同协议
- 2025劳务合同协议书
- 钢城社工考试题及答案大全
- 数字化建造技能培训与行业认证体系的构建
- 非遗项目考试题及答案
- 高校影视专业学生通过AI技术增强团队协作意识的机制
- GB/T 11021-2007电气绝缘耐热性分级
- 元数据教学讲解课件
- CCP与备货0403 (华为培训)课件
- ASCVD时代总体心血管风险评估工具的更新ppt参考课件
- 人工智能导论-课件-第2章知识图谱
- 华中8型数控系统设备连接与参数配置
- 防突管理制度汇编
- 江苏省教育科学规划课题开题报告
- 医疗器械GMP文件PUR-OP-001 Rev 01采购控制程序
- 精选商务礼仪情景模拟情景
- 男生青春期健康教育(我)
评论
0/150
提交评论