




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.1平面向量数量积的物理背景及其含义三维目标: 1、知识与技能:(1)理解平面向量数量积的几何意义及其物理意义; (2)掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;(3)理解平面向量的数量积与向量投影的关系;(4)了解用平面向量的数量积可以处理有关长度、角度和垂直的问题能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2、过程与方法 (1)在学习和运用向量的数量积的过程中,进一步体会平面向量本质及它与生活和自然科学联系,认识事物的统一性,并通过学习向量的数量积感受数形结合的思想方法;(2)培养学生数形结合的思想方法以及分析问题、解决问题的能力及钻研精神,培养学生的运算能力、严谨的思维习惯以及解题的规范性。(3)通过对向量的数量积的探究、交流、总结,从各角度、用各方法来体会向量之间的关系和作用,不断从感性认识提高到理性认识,。3、情态与价值观(1)通过用向量数量积解决问题的思想的学习,使学生加深认识数学知识之间的联系,体会数学知识抽象性、概括性和应用性,培养起学生学习数学的兴趣,形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗。(2)通过对向量数量积及所产生的思想方法的学习及探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神; 教学重点:平面向量的数量积定义及应用(能利用数量积解决求平行、垂直、夹角等问题) 教学难点:平面向量的数量积与向量投影的关系; 运算律的理解和平面向量数量积的应用。教学过程:一、情景导入、引出新课1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么 ?期望学生回答:向量的加法、减法及数乘运算。 2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?期望学生回答:物理模型概念性质运算律应用3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义 二、合作探究,精讲点拨探究一:数量积的概念SF1、给出有关材料并提出问题3:(1)如图所示,一物体在力F的作用下产生位移S,那么力F所做的功:W= |F| |S| cos。 (2)这个公式的有什么特点?请完成下列填空:W(功)是 量,F(力)是 量,S(位移)是 量,是 。(3)你能用文字语言表述“功的计算公式”吗?期望学生回答:功是力与位移的大小及其夹角余弦的乘积2、明晰数量积的定义(1) 数量积的定义:已知两个非零向量与,它们的夹角为,我们把数量 bcos叫做与的数量积(或内积),记作:,即:= cos(2)定义说明:记法“”中间的“ ”不可以省略,也不可以用“ ”代替。 “规定”:零向量与任何向量的数量积为零。(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些? 期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不仅和向量与的模有关,还和它们的夹角有关。(4)学生讨论,并完成下表:的范围090=900180的符号(5)探究题组一 :已知,当,与的夹角是60时,分别求.解:当时,若与同向,则它们的夹角,cos036118;若与反向,则它们的夹角180,cos18036(-1)18;当时,它们的夹角90,;当与的夹角是60时,有cos60369评述: 两个向量的数量积与它们的夹角有关,其范围是0,180,因此,当时,有0或180两种可能. 探究二:研究数量积的几何意义1.给出向量投影的概念:如图,我们把cos(cos)叫做向量在方向上(在方向上)的投影,记做:OB1=cos注:投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0时投影为 |b|;当q = 180时投影为 -|b|.2.提出问题5:数量积的几何意义是什么?期望学生回答:数量积等于的长度与在的方向上的投影cos 的乘积。探究三:探究数量积的运算性质1、数量积的性质性质:若和均为非零向量 (1)0 (垂直) (2)与同向时, =,与 反向 时, =- 特别地:=2 = (长度)(3)cos=(夹角)(4) (注意等号成立的条件)2、探究题组二(师生共同完成)已知=6,=4, 与的夹角为60,求(+2 )(-3),并思考此运算过程类似于实数哪种运算?解:(+2 )(-3)=.-3.+2.-6. =36-3460.5-644 = -72评述:可以和实数做类比记忆数量积的运算律变式:(1)(+)2=2+2+2 (2)(+ )(-)= 22 探究四、数量积的运算律: (1)交换律: ; (2)对数乘的结合律: ; (3)分配律: 注意:数量积不满足结合律和消去律,即:(1) (2)_探究题组3:解: 三、思悟小结:知识线:(1)平面向量的数量积;(2)平面向量的数量积的几何意义;(3)平面向量数量积的重要性质及运算律;(4)平面向量的数量积与向量投影的关系。思想方法线:(1)公式或定义法;(2)数形结合、分类讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45981.1-2025重型燃气轮机用大型铸锻件第1部分:钢质自由锻件
- 2024-2025学年临床执业医师考前冲刺练习试题附答案详解【基础题】
- 2025石油石化职业技能鉴定考试预测复习含答案详解(能力提升)
- 婴幼儿秋季腹泻的生理易感因素深度剖析
- 外墙装修工程合同(标准版)
- 2024年会计硕士能力提升B卷题库及参考答案详解(考试直接用)
- 2025年私人银行业务客户服务模式优化与创新研究报告
- 2025年建筑信息模型(BIM)在工程项目全过程管理中的项目可持续发展报告
- 2025年社区团购市场用户留存与社区电商模式研究报告
- 2025年环保产业技术创新与产业升级新能源利用研究报告
- 2025年秋人教版(2024)初中数学八年级第一学期教学计划及教学进度表
- 2025年全国计算机等级考试三级网络技术模拟题及答案
- 软件行业基础知识培训课件
- GB 46039-2025混凝土外加剂安全技术规范
- 传染病医院质量控制检查标准表
- 卷烟零售户培训课件
- 刑事诉讼法案例课件
- 2025年杭州市上城区九堡街道社区卫生服务中心招聘编外4人笔试备考试题及答案解析
- 2025年煤矿从业人员安全培训考试题库及答案
- 医院净化空调系统基本知识
- 内蒙锡林郭勒盟卫生系统招聘考试(护理学专业知识)题含答案2024年
评论
0/150
提交评论