




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学一轮复习精品教案函数(附高考预测)一、考点回顾1.理解函数的概念,了解映射的概念.2. 了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程3.了解反函数的概念及互为反函数的函数图象间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。二、经典例题剖析考点一:函数的性质与图象例1、(2008广东汕头二模)设集合A=x|x1,B=x|log2x0,则AB=( ) Ax| x1Bx|x0Cx|x-1 Dx|x1【解析】:由集合B得x1 , AB=x| x1,故选(A) 。例2、(2008广东惠州一模) “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是 ( ) A B C D【解析】:选(B),在(B)中,乌龟到达终点时,兔子在同一时间的路程比乌龟短。例3、(2008年广东惠州一模)设 ,又记则 ( )A; B; C; D;【解析】:本题考查周期函数的运算。,据此,因为型,故选.例4、(2008福建文科高考试题)函数,若,则的值为 ( )A.3 B.0 C.-1 D.-2【解析】:为奇函数,又故即.例5、(2008广东高考试题)设,函数,试讨论函数的单调性【解析】 对于,当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数;对于,当时,函数在上是减函数;当时,函数在上是减函数,在上是增函数。考点二:二次函数二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题.同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.例6、(2007湖北文科高考试题)设二次函数,方程的两根和满足(I)求实数的取值范围;(II)试比较与的大小并说明理由【解析】法1:()令,则由题意可得故所求实数的取值范围是(II),令当时,单调增加,当时,即法2:(I)同解法1(II),由(I)知,又于是,即,故法3:(I)方程,由韦达定理得,于是故所求实数的取值范围是(II)依题意可设,则由,得,故考点三:指数函数与对数函数指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性质并能进行一定的综合运用.Oyx例8、(2008山东文科高考试题)已知函数的图象如图所示,则满足的关系是( )ABCD【解析】:由图易得取特殊点 .选A.例9、(2007全国高考试题)设,函数在区间上的最大值与最小值之差为,则()A B CD【解析】:设,函数在区间上的最大值与最小值分别为,它们的差为, ,4,选D。例10、(2008全国高考试题)若,则( )ABC D 【解析】:由,令且取知考点四:抽象函数怎样求解抽象函数问题,我们可以利用特殊模型法,函数性质法,特殊化方法,联想类比转化法,等多种方法从多角度,多层面去分析研究抽象函数问题,(一) 函数性质法函数的特征是通过其性质(如奇偶性,单调性周期性,特殊点等)反应出来的,抽象函数也是如此,只有充分挖掘和利用题设条件和隐含的性质,灵活进行等价转化,抽象函数问题才能转化,化难为易,常用的解题方法有:1,利用奇偶性整体思考;2,利用单调性等价转化;3,利用周期性回归已知4;利用对称性数形结合;5,借助特殊点,布列方程等.(二 )特殊化方法1、在求解函数解析式或研究函数性质时,一般用代换的方法,将x换成x等2、在求函数值时,可用特殊值代入3、研究抽象函数的具体模型,用具体模型解选择题,填空题,或由具体模型函数对综合题,的解答提供思路和方法.例13、(2008陕西文) 定义在上的函数满足(),则等于( )A2B3C6D9解:令,令;令得 考点五:函数的综合应用例14、(2008广东高考试题)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房。经测算,如果将楼房建为x(x10)层,则每平方米的 平均建筑费用为560+48x(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)【解析】:设楼房每平方米的平均综合费为元,依题意得则,令,即,解得当时,;当时,因此,当时,取得最小值,元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层。例15、(2007湖北文科高考试题)某商品每件成本9元,售价为30元,每星期卖出432件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比.已知商品单价降低2元时,一星期多卖出24件(I)将一个星期的商品销售利润表示成的函数;(II)如何定价才能使一个星期的商品销售利润最大?【解析】:()设商品降价元,则多卖的商品数为,若记商品在一个星期的获利为,则依题意有,又由已知条件,于是有,所以()根据(),我们有21200极小极大故时,达到极大值因为,所以定价为元能使一个星期的商品销售利润最大考点六、函数的零点例16、(2008山东荷泽模拟题)函数的零点所在的区间是 )AB(1,10)CD解:因为f(1)010,f(10)10,即f(1)f(10)0,所以函数f(x)在区间(1,10)之间有零点。例17、(2007广东高考题)已知a是实数,函数,如果函数在区间-1,1上有零点,求实数a的取值范围。【解析】当a=0时,函数为f(x)=2x -3,其零点x=不在区间-1,1上。当a0时,函数f(x) 在区间-1,1分为两种情况:函数在区间1,1上只有一个零点,此时或解得1a5或a= 函数在区间1,1上有两个零点,此时 或解得a5或a综上所述,如果函数在区间1,1上有零点,那么实数a的取值范围为(-, 1, +)四、方法总结与高考预测(一)思想方法总结1. 数形结合2. 分类讨论3. 函数与方程(二)2010年高考预测1.考查有关函数单调性和奇偶性的试题,从试题上看,抽象函数和具体函数都有,有向抽象函数发展的趋势,另外试题注重对转化思想的考查,且都综合地考查单调性与奇偶性.2.考查与函数图象有关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想来解题的能力.3.考查与指数函数和对数函数有关的试题.对指数函数与对数函数的考查,大多以基本函数的性质为依托,结合运算推理来解决.4加强函数思想、转化思想的考查是高考的一个重点.善于转化命题,引进变量建立函数,运用变化的方法、观点解决数学试题以提高数学意识,发展能力.5、注意与导数结合考查函数的性质.6、函数的应用,是与实际生活结合的试题,应加强重视。五、复习建议复习函数时要注意:1.深刻理解一些基本函数,如二次函数、指数函数、对数函数的图象与性质,对数与形的基本关系能相互转化.2.掌握函数图象的基本变换,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法规安全综合培训课件
- 法考先修课件
- 法理学大一课件
- 蔬菜分拣管理考试题及答案
- 飞机出厂安全测试题及答案解析
- 兆光热电厂安全培训试题及答案解析
- 2025年新能源技术创新对全球产业格局影响深度研究报告
- 疫情期间安全培训考试题及答案解析
- 单招奇葩模拟试题及答案
- 2025福建福州市水路运输事业发展中心招聘编外人员1人考前自测高频考点模拟试题及答案详解(各地真题)
- QGDW11703-2017电力视频监控设备技术规范
- 军工涉密项目管理制度
- 16949体系培训计划
- T/CAZG 003-2019亚洲象饲养管理技术规范
- 《智慧仓储管理》课程标准
- 火锅店股东协议合同协议
- 电梯曳引钢丝绳维护保养制度
- 沪教版(五四学制)(2024)六年级下册单词表+默写单
- 茶叶加工工(中级)模拟试题与答案
- 高考语文复习【高效课堂精研】打造议论文分论点+课件
- 《SAP培训资料》课件
评论
0/150
提交评论