


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 第第 1616 章章 二次根式复习课二次根式复习课 【教学目标教学目标】 1使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子; 2熟练地进行二次根式的加、减、乘、除混合运算 【教学重点教学重点】含二次根式的式子的混合运算 【教学难点教学难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子 【教学方法教学方法】典例解析法 【教学过程教学过程】 【知识回顾知识回顾】 ( ( 填空形式,学生口答填空形式,学生口答) ) 1.1.二次根式:二次根式:式子(0)叫做二次根式。 (当0 时,0;当0 时,aaaaa 在实数范围内有意义。 )a 2.2.最简二次根式:最简二次根式:必须同时满足下列条件: 被开方数中不含开方开的尽的因数或因式不含开方开的尽的因数或因式; 被开方数中不含分母不含分母; 分母中不含根不含根 式式。 3.3.同类二次根式:同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.4.二次根式的性质:二次根式的性质: (1) ()2= (0) ; (2) aaa aa2 5.5.二次根式的运算:二次根式的运算: 二次根式的加减运算: 先把二次根式化成最简二次根式,然后合并同类二次根式即可。 二次根式的乘除运算: =(0,b0) ; ba aba 0, 0ba b a b a 【设计意图设计意图】通过对知识的梳理,让学生对本章知识有个系统的认知,理清知识点之间 的联系,掌握注意的地方,加深对知识的全面理解。 【例题讲解例题讲解】 例例 1 1 1.使有意义的的取值范围是 2xx 2.中,的取值范围是 分析:分析:第 2 题的分子是二次根式,分母是含 x 的多项式,因此 x 的取值必须使二次根 式有意义,同时使分母的值不等于零。 例例 2 2 下列根式中属最简二次根式的是( ) A. B. C. D. 2 1a 1 2 827 分析:分析:B 选项根式被开方数中中含有分母,CD 选项中含有能开得尽方的因数(或式) 。 例例 3 3 下列各式中与是同类二次根式的是( ) A2 B C D 分析:分析:判断是否是同类二次根式前,要对每个根式进行化简。 (0aa ) (0aa ) 0 (=0) ;a 2 例例 4 4 计算:(1)= ; (2)=_。 2 )3( 2 4 分析:分析:根据二次根式的性质可直接得到结论。 例例 5 5 化简:(1)_ _; _ _;(2)72 6 12 18 _ _; 32 75(0,0)x yxy 分析:分析:逆用二次根式乘除法公式结合二次根式的性质可直接得到结论。 例例 6 6 计算:(1)+ (2)1218832 _; (3) ; 分析:分析:第 1 小题首先要将它们化成最简二次根式,然后合并同类二次根式。第 2 题即可 以先算括号里的运算,也可以用乘法的分配律展开来计算。第 3 题利用平方差公式运算简单。 例例 7 7 Aa2 Ba2 Ca2 Da2 分析:分析: 故:a-20。 【基础训练基础训练】 1下列根式中不是最简二次根式的是( ) A A B B C C D D10862 2的倒数是 。3 3.下列计算正确的是 ( ) A B CD 4.下列运算正确的是( ) A、 B、 C、 D、4 . 06 . 15 . 15 . 1 2 39 3 2 9 4 5已知等边三角形 ABC 的边长为33,则 ABC 的周长是_; 6. 比较大小: 。10 7下列各组二次根式中是同类二次根式的是( ) A B C D 2 1 12与2718与 3 1 3与 5445与 3 8.已知二次根式与是同类二次根式,则的 值可以是( ) A、5 B、6 C、7 D、8 9若,则 230ab 2 ab 10.计算:(1) (2) (3) (4)2712 4 1 48 【课堂小结课堂小结】 1本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理 解并牢固掌握 2在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条 件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范 围 3运用二次根式的四个基本性质进行二次根式的运算时,一定要注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曹县社工招聘考试真题及答案
- 2025自愿租房合同协议范本房屋租赁合同
- 2025购销铝材合同范文
- 2025经济适用房购房合同范本
- 物体沉浮条件试题及答案
- 2025电子产品销售租赁合同
- 《2025租赁协议及房产出租合同范本》
- 2025肉牛养殖合作协议范本
- 2025酒店员工劳动合同协议书
- 2025年租赁房屋转租协议模板
- 科技论文写作 第2版 课件 第1-5章 科技论文写作概述-英文科技论文的写作
- 2025年教师参加初中英语新教材培训心得体会
- 2025鸡舍建设承包合同书样本版
- 2025年中考化学一轮复习全册1-12单元22个必考实验大全(背诵+默写)含答案
- DBJ04T 447-2023 装配式农村住房建筑技术标准
- 2025年惠州市国资本投资集团限公司招聘29人高频重点提升(共500题)附带答案详解
- 医院未来人才培养与引进策略
- 医院感染管理制度培训
- 【MOOC】研究生学术规范与学术诚信-南京大学 中国大学慕课MOOC答案
- 宁德时代应聘笔试题库及答案
- 旅游公司与导游合作协议书
评论
0/150
提交评论