




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考总复习尺规作图一、理解“尺规作图”的含义在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:过点、点作直线;或作直线;或作射线;连结两点;或连结;延长到点;或延长(反向延长)到点,使;或延长交于点;2.用圆规作图的几何语言:在上截取;以点为圆心,的长为半径作圆(或弧);以点为圆心,的长为半径作弧,交于点;分别以点、点为圆心,以、的长为半径作弧,两弧相交于点、 .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。五种基本作图: 、作一条线段等于已知线段; 、作已知线段的垂直平分线(中点); 、作已知直线的垂线(分过直线外一点作直线的垂线和过直线上一点作直线的垂线两种情况); 、作一个角等于已知角; 、作已知角的角平分线;补充:、作已知线段的黄金分割点;4.1、作一条线段等于已知线段已知:如图,线段a .求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP上用圆规截取AB=a .则线段AB就是所求作的图形。4.2、作已知线段的垂直平分线(中点)已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:()分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;()连接PQ交MN于O则点O就是所求作的的中点。(试问:PQ与有何关系?)4.3、作已知直线的垂线4.3.1、过直线外一点作直线的垂线已知:直线a、及直线a外一点A.(画出直线a、点A)ACDB求作:直线a的垂线直线b,使得直线b经过点A.作法: _ a(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)4.3.2、过直线上一点作直线的垂线已知:直线a、及直线a上一点A.MCDN求作:直线a的垂线直线b,使得直线b经过点A.作法: _ a A(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b4.4、作一个角等于已知角求作一个角等于已知角MON(如图1)图(1) 图(2) 作法:(1) 作射线;(2) 在图(1)上,以O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(3) 以为圆心,OA的长为半径作弧,交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线则就是所要求作的角4.5、作已知角的角平分线已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、为圆心,大于的相同线段为半径画弧,两弧交AOB内于;(3) 作射线OP。则射线OP就是AOB的角平分线。4.6、作已知线段的黄金分割点尺规作图典型例题归纳1、已知两边及夹角作三角形。已知:如图,线段m,n, .求作:ABC,使A=,AB=m,AC=n.作法:(1) 作A=;(2) 在AB上截取AB=m ,AC=n;(3) 连接BC。则ABC就是所求作的三角形。2、如图(1),已知直线AB及直线AB外一点C,过点C作CDAB(写出作法,画出图形)分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角ECD=EFB即可作法 如图(2)图(1) 图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线3、如下图,ABC中,a=5cm,b=3cm,c=3.5cm,B=,C=,请你从中选择适当的数据,画出与ABC全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据)分析 本题实质上是利用原题中的5个数据,列出所有与ABC全等的各种情况,依据是SSS、SAS、AAS、ASA解 与ABC全等的三角形如下图所示4、正在修建的中山北路有一形状如下图所示的三角形空地需要绿化拟从点A出发,将ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法)(2003年,桂林)分析 这是尺规作图在生活中的具体应用要把ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可作法 如下图,找三等分点的依据是平行线等分线段定理5、如图(1)所示,已知线段a、b、h(hb)求作ABC,使BC=a,AB=b, BC边上的高AD=h图(1)错解 如图(2),(1)作线段BC=a;(2)作线段BA=b,使ADBC且AD=h则ABC就是所求作的三角形错解分析 不能先作BC;第2步不能同时满足几个条件,完全凭感觉毫无根据;未考虑到本题有两种情况对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD,再作AB,最后确定BC图(2) 图(3)正解 如图(3)(1)作直线PQ,在直线PQ上任取一点D,作DMPQ;(2)在DM上截取线段DA=h;(3)以A为圆心,以b为半径画弧交射线DP于B;(4)以B为圆心,以a为半径画弧,分别交射线BP和射线BQ于和;(5)连结、,则(或)都是所求作的三角形6、如下图,已知钝角ABC,B是钝角求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形)分析 (1)作BC边上的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线作法 如下图(1)在直线CB外取一点P,使A、P在直线CB的两旁;以点A为圆心,AP为半径画弧,交直线CB于G、H两点;分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;作射线AE,交直线CB于D点,则线段AD就是所要求作的ABC中BC边上的高(2)分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;作直线MN,交BC于点F;连结AF,则线段AF就是所要求作的ABC中边BC上的中线说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点7、 如下图,已知线段a、b、求作梯形ABCD,使AD=a,BC=b,ADBC,B=;C=分析 假定梯形已经作出,作AEDC交BC于E,则AE将梯形分割为两部分,一部分是ABE,另一部分是AECD在ABE中,已知B=,AEB=,BE=b-a,所以,可以首先把它作出来,而后作出AECD作法 如下图(1)作线段BC=b;(2)在BC上截取BE=b-a ;(3)分别以B、E为顶点,在BE同侧作EBA=,AEB=,BA、EA交于A;(4)以EA、EC为邻边作AECD四边形ABCD就是所求作的梯形说明 基本作图是作出较简单图形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理剧本题目大全及答案
- 青春启示录550字(14篇)
- 我爱读书作文400字(9篇)
- 会议纪要及行动计划编写指南
- 企业组织结构优化设计方案
- 演讲稿母亲节450字10篇范文
- 领略古代小说魅力:大二语文古代小说欣赏教学教案
- 企业信息管理系统集成方案工具集
- 市场调研报告及保密协议签署书
- 小学生关于五一见闻作文300字13篇
- 学校安全“日管控、周排查、月总结”工作制度
- 机械原理课程设计15吨压片机设计
- 2023年五四青年节演讲比赛PPT担负青年使命弘扬五四精神PPT课件(带内容)
- 集中供热管网系统一次网的调节方法
- 2023年义务教育音乐2022版新课程标准考试测试题及答案
- 无线充电技术在汽车上的应用
- 马工程《刑法学(下册)》教学课件 第17章 危害国家安全罪
- 11科室临床路径、单病种管理目录
- 2023年资产评估师《资产评估基础》题库附参考答案(基础题)
- 铁路职工政治理论应知应会题库
- 综合性文稿写作名师优质课赛课一等奖市公开课获奖课件
评论
0/150
提交评论