




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率与统计常见题型一、随机抽样和用样本估计总体规律方法 (1)解答与抽样方法有关的问题的关键是深刻理解各种抽样方法的特点、适用范围和实施步骤,熟练掌握系统抽样中被抽个体号码的确定方法,掌握分层抽样中各层人数的计算方法(2)与频率分布直方图、茎叶图有关的问题,应正确理解图表中各个量的意义,通过图表掌握信息是解决该类问题的关键(3)在做茎叶图或读茎叶图时,首先要弄清楚“茎”和“叶”分别代表什么,正确求出数据的众数和中位数;方差越小,数据越稳定特别提醒:频率分布直方图中的纵坐标为,而不是频率值1、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() A101 B808 C1 212 D2 0122、如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5 的城市个数为11,则样本中平均气温不低于25.5 的城市个数为_ 3、如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_(注:方差s2(x1)2(x2)2(xn)2,其中为x1,x2,xn的平均数)二、变量的相关性和统计案例规律方法 解决线性回归问题的关键是:(1)正确理解计算,的公式并准确的计算,若对数据作适当的预处理,可避免对大数字进行运算;(2)分析两个变量的相关关系时,可根据样本数据作散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值4、某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元88.28.48.68.89销量y/件908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)5、某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20022004200620082010需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程x;(2)利用(1)中所求出的直线方程预测该地2013年的粮食需求量三、古典概型与几何概型规律方法 (1)解决古典概型问题的关键是正确求出基本事件总数和所求事件包含的基本事件数P(A)既是古典概型的定义,又是求概率的计算公式,应熟练掌握(2)解决几何概型的关键是寻找试验的全部结果构成的区域和事件发生时构成的区域,有时需要设出变量,在坐标系中表示所需要的区域(3)若事件正面情况比较多、反面情况较少,则一般利用对立事件进行计算对于“至少”、“至多”等事件的概率计算,往往用这种方法求解6、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A B C1 D 第6题 第8题7、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为() A B C D8、如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于()A B C D四、概率统计综合问题规律方法 1抽样方法和概率问题的综合一般是从分层抽样开始,设置分层抽样中的一些计算问题,然后就分层抽样中各个层设置一个古典概型计算问题虽然此类题目所考查的知识横跨两部分,但是分解开来后,并不难解决由于此类题目多与实际问题联系紧密,题干较长,信息量大,且会有图表,因此要认真审题并要掌握解答题目所需的知识要做到:(1)分层抽样中的公式运用要准确抽样比.层1的数量层2的数量层3的数量样本1的容量样本2的容量样本3的容量(2)在计算古典概型概率时,基本事件的总数要计算准确2频率分布与概率的综合主要有两种形式:(1)题目中给出了样本的频率分布表,它反映了样本在各个组内的频数和频率,要求根据频率分布表画出频率分布直方图,并根据样本在各组的频数,设置分层抽样和概率计算等(2)利用频率与概率的关系,频率近似于概率,给出某类个体中的一个个体被抽中的概率,从而求出样本容量及其他类个体的数量在解决此类问题时,可将题目中所给概率作为此类个体被抽中的频率,从而求解9、近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a0,abc600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值(注:s2(x1)2(x2)2(xn)2,其中为数据x1,x2,xn的平均数)10、某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X70时,Y460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表 近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率五、数形结合思想解决有关统计问题(1)通过频率分布直方图和频数条形图研究数据分布的总体趋势;(2)根据样本数据散点图确定两个变量是否存在相关关系解答时注意的问题: (1)频率分布直方图中的纵坐标为,而不是频率值;(2)注意频率分布直方图与频数条形图的纵坐标的区别11、为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下: (1)估计该校男生的人数;(2)估计该校学生身高在170185 cm之间的概率;(3)从样本中身高在180190 cm之间的男生中任选2人,求至少有1人身高在185190 cm之间的概率概率与统计练习:1在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数 B平均数 C中位数 D标准差2对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A46,45,56 B46,45,53 C47,45,56 D45,47,533在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为()A B C D4袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率5设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg6要完成下列两项调查:从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;从某中学的15名艺术特长生中选出3人调查学习负担情况宜采用的抽样方法依次为()A简单随机抽样法,系统抽样法 B分层抽样法,简单随机抽样法C系统抽样法,分层抽样法 D都用分层抽样法7容量为20的样本数据,分组后的频数如下表:则样本数据落在区间10,40)的频率为()分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542A0.35 B0.45 C0.55 D0.658设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是() A B C D9为了分析某同学在班级中的数学学习情况,统计了该同学在6次月考中的数学名次,用茎叶图表示如图所示,则该组数据的中位数为_ 10若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:分组频数频率3,2)0.102,1)8(1,20.50(2,310(3,4合计501.00(1)将上面表格补充完整;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数11甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如图:(1)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(2)若在茎叶图中的甲、乙预赛成绩中各任取1次成绩分别记为a和b,求满足ab的概率1、解析:四个社区抽取的总人数为12212543101,由分层抽样可知,解得N808.故选B.2、9解析:由于组距为1,则样本中平均气温低于22.5 的城市频率为0.100.120.22.平均气温低于22.5 的城市个数为11,所以样本容量为50.而平均气温高于25.5 的城市频率为0.18,所以,样本中平均气温不低于25.5 的城市个数为500.189.3、6.8解析:11,s26.8.4、解:(1)由于(x1x2x3x4x5x6)8.5, (y1y2y3y4y5y6)80,所以80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1 00020361.25,当且仅当x8.25时,L取得最大值故当单价定为8.25元时,工厂可获得最大利润5、解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,为此对数据预处理如下:年份200642024需求量257211101929对预处理后的数据,容易算得0,3.2,6.5, 3.2.由上述计算结果,知所求回归直线方程为257 (x2 006)6.5(x2 006)3.2,即6.5(x2 006)260.2. (2)利用直线方程,可预测2013年的粮食需求量为: 65(2 0132 006)260.26.57260.2305.7(万吨)306(万吨)6、C解析:设OAOB2R,连接AB,如图所示,由对称性可得,阴影的面积就等于直角扇形拱形的面积,S阴影(2R)2(2R)2(2)R2,S扇R2,故所求的概率是1.7、A解析:记三个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个记事件A为“甲、乙两位同学参加同一个兴趣小组”,则事件A包含“甲1,乙1;甲2,乙2;甲3,乙3”,共3个 因此P(A).8、C解析:由题意知,可设事件A为“点Q取自ABE内”,构成试验的全部结果为矩形ABCD内所有点,事件A为ABE内的所有点,又因为E是CD的中点,所以SABEADAB,S矩形ABCDADAB,所以P(A).9、解:(1)厨余垃圾投放正确的概率约为: .(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为0.7, 所以P(A)约为10.70.3.(3)当a600,bc0时,s2取得最大值因为(abc)200,所以s2(600200)2(0200)2(0200)280 000.10、解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)P(Y490或Y530)P(X130或X210)P(X70)P(X110)P(X220).故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.11、解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170185 cm之间的学生有141343135人,样本容量为70,所以样本中学生身高在170185 cm之间的频率f0.5,故由f估计该校学生身高在170185 cm之间的概率P10.5.(3)样本中身高在180185 cm之间的男生有4人,设其编号为,样本中身高在185190 cm之间的男生有2人,设其编号为,从上述6人中任取2人的树状图为:故从样本中身高在180190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185190 cm之间的可能结果数为9,因此,所求概率P2.练习答案:1D解析:由s,可知B样本数据每个变量增加2,平均数也增加2,但(xn)2不变,故选D.2A解析:由茎叶图可知中位数为46,众数为45,极差为681256.故选A.3C解析:此概型为几何概型,由于在长为12 cm的线段AB上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示因此所求概率为,即,故选C.4解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种 所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种 由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种所以这两张卡片颜色不同且它们的标号之和小于4的概率为.5D选项中,若该大学某女生身高为170 cm,则其体重约为:0.8517085.7158.79 kg.故D不正确6 中总体由差异明显的几部分构成,宜采用分层抽样法,中总体中的个体数较少,宜采用简单随机抽样法,故选B.7B解析:样本数据落在区间10,40)的频数为2349,故所求的频率为0.45.8D解析:题目中表示的区域为如图所示的正方形,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此P,故选D.918.5解析:由茎叶图知中间两位数为18和19,所以中位数为18.5.10解:(1)分组频数频率3,2)50.102,1)80.16(1,2250.50(2,3100.20(3,420.04合计501.00(2)由频率分布表知,该厂生产的此种产品
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州黔东南州第十三届贵州人才博览会黔东南州事业单位人才引进19人模拟试卷及答案详解(夺冠)
- 2025广西南宁市博物馆招聘编外人员3人考前自测高频考点模拟试题及一套答案详解
- 2025广西旅发防城港投资有限公司招聘20人模拟试卷附答案详解
- 2025河南郑州普海外国语学校招聘24人模拟试卷及1套参考答案详解
- 2025国家民委直属事业单位招聘48人考前自测高频考点模拟试题有答案详解
- 2025安徽黄山市祁门县国有投资集团有限公司人才招聘5人模拟试卷带答案详解
- 伊核协议书免受
- 销售折账协议书
- 薪资流水保密协议书
- 安保入职协议书
- 人教版九年级物理上-各单元综合测试卷含答案共五套
- 文科物理(兰州大学)学习通网课章节测试答案
- 人教版高二数学(上)选择性必修第一册1.2空间向量基本定理【教学设计】
- 2025年安徽省公务员录用考试《行测》真题及答案
- 2025中医四大经典知识竞赛真题模拟及答案
- 烘焙类产品的特性及应用
- 公路交通安全设施工高级工培训内容
- 第三章转录及转录调控
- GB/T 7193-2008不饱和聚酯树脂试验方法
- GB/T 3810.3-2016陶瓷砖试验方法第3部分:吸水率、显气孔率、表观相对密度和容重的测定
- 《嵌入式技术应用》课程标准
评论
0/150
提交评论