经典排列组合应用题的解法技巧_第1页
经典排列组合应用题的解法技巧_第2页
经典排列组合应用题的解法技巧_第3页
经典排列组合应用题的解法技巧_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解排列组合应用题的解法 技巧一. 运用两个基本原理 加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有( ) (A)6种 (B)9种 (C)11种 (D)23种 练习:1投递问题:3封信2个邮箱有多少投递方案 2映射个数计算:从集合A1,2,3,到集合Ba,b能建立多少映射二. 特殊元素(位置)优先-(优待法) 所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)要优先考虑 例3:从0,1,9这10个数字中选取数字组成偶数,一共可以得到无重复数字的五位偶数多少个? 注 0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。 例4:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?【eg】在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个注这道例题是典型的限制排列组合题解题时,若从元素入手(即元素优先),常要分类讨论,分类时要注意堵漏防重;若从位置入手(即位置优待1,常要分步解答,分步时要注意分步完整,各步相连练习(1)由数字0,1,2,9组成没有重复数字的三位数,且能被3整除(2)从1,2,3,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?三. 捆绑法 在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法 例5:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?注运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题四. 插空法 不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法 例6:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 注:捆绑法与插入法一般适用于有如上述限制条件的排列问题【eg】用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个(用数字作答) 例7.马路上有编号为1,2,3,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?注运用插空法解决不相邻问题时,要注意欲插入的位置是否包含两端位置1 练习 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 五.定序问题缩倍法 例8.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法定序问题可以用倍缩法,还可转化为占位插空模型处理练习题:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A、210种 B、300种 C、464种 D、600种七.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地个不同元素排在个不同位置的排列数有种方法.例10.把6名实习生分配到7个车间实习,共有多少种不同的分法允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种练习题:1. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.名额(指标)分配问题隔板法:例9.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为练习题:1 10个相同的球装5个盒中,每盒至少一有多少装法? 2 20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法?3.求这个方程组的非负整数解的个数 4. 10张参观公园的门票分给5个班,每班至少1张,有几种选法?注:档板分隔模型专门用来解答同种元素的分配问题。【eg】10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36;15);八.排列组合混合问题先选后排策略(全员分配问题分组法):例11.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?练习题:(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) A、480种 B、240种 C、120种 D、96种九. .利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例12.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?练习:1:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?2:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法?十三:有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例13.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A、1260种 B、2025种 C、2520种 D、5040种 (2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?十.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例14.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?欣赏部分十一.复杂的排列组合问题也可用分解与合成法:例15.(1)30030能被多少个不同偶数整除?(2)正方体8个顶点可连成多少队异面直线?十二.数字排序问题查字典策略例15由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 十三.圆排问题单排法:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列.例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?练习类型一排列的基本问题例一7位同学站成一排照相(1)甲站在中间,共有多少种不同的排法?(2)甲、乙只能站在两端的排法共有多少种?(3)甲不排头、乙不排尾的排法共有多少种?(4)甲、乙两同学必须相邻的排法共有多少种?(5)甲、乙两同学不能相邻的排法共有多少种?(6)甲必须站在乙的左边的不同排法共有多少种?变式6个人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻; (3)甲、乙不相邻; (4)甲、乙之间间隔两人;(5)甲、乙站在两端; (6)甲不站左端,乙不站右端类型二组合的基本问题例二课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;(2)两队长当选;(3)至少有1名队长当选;(4)至多有2名女生当选;(5)既要有队长,又要有女生当选变式从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任类型三分堆与分配问题例三现有6本不同的书:(1)甲、乙、丙三人每人两本,有多少种不同的分配方法?(2)分成三堆,每堆2本,有多少种分堆方法?(3)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本,有多少种不同的分配方法?(5)甲、乙、丙三人中,一人分4本,另两人每人分1本,有多少种不同的分配方法?一般地:将个不同元素均匀分成组(每组个元素),共有 种方法思考(1):8名球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论